Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Airway smooth muscle prostaglandin-EP1 receptors directly modulate β2–adrenergic receptors within a unique heterodimeric complex
Dennis W. McGraw, Kathryn A. Mihlbachler, Mary Rose Schwarb, Fahema F. Rahman, Kersten M. Small, Khalid F. Almoosa, Stephen B. Liggett
Dennis W. McGraw, Kathryn A. Mihlbachler, Mary Rose Schwarb, Fahema F. Rahman, Kersten M. Small, Khalid F. Almoosa, Stephen B. Liggett
View: Text | PDF
Research Article Inflammation

Airway smooth muscle prostaglandin-EP1 receptors directly modulate β2–adrenergic receptors within a unique heterodimeric complex

  • Text
  • PDF
Abstract

Multiple and paradoxical effects of airway smooth muscle (ASM) 7-transmembrane–spanning receptors activated during asthma, or by treatment with bronchodilators such as β2–adrenergic receptor (β2AR) agonists, indicate extensive receptor crosstalk. We examined the signaling of the prostanoid-EP1 receptor, since its endogenous agonist prostaglandin E2 is abundant in the airway, but its functional implications are poorly defined. Activation of EP1 failed to elicit ASM contraction in mouse trachea via this Gαq-coupled receptor. However, EP1 activation markedly reduced the bronchodilatory function of β2AR agonist, but not forskolin, indicating an early pathway interaction. Activation of EP1 reduced β2AR-stimulated cAMP in ASM but did not promote or augment β2AR phosphorylation or alter β2AR trafficking. Bioluminescence resonant energy transfer showed EP1 and β2AR formed heterodimers, which were further modified by EP1 agonist. In cell membrane [35S]GTPγS binding studies, the presence of the EP1 component of the dimer uncoupled β2AR from Gαs, an effect accentuated by EP1 agonist activation. Thus alone, EP1 does not appear to have a significant direct effect on airway tone but acts as a modulator of the β2AR, altering Gαs coupling via steric interactions imposed by the EP1:β2AR heterodimeric signaling complex and ultimately affecting β2AR-mediated bronchial relaxation. This mechanism may contribute to β-agonist resistance found in asthma.

Authors

Dennis W. McGraw, Kathryn A. Mihlbachler, Mary Rose Schwarb, Fahema F. Rahman, Kersten M. Small, Khalid F. Almoosa, Stephen B. Liggett

×

Figure 4

Effect of EP1 receptor activation on β2 AR agonist–stimulated cAMP production, receptor sequestration and receptor phosphorylation.

Options: View larger image (or click on image) Download as PowerPoint

                  Effect of EP1
                  receptor activation o...
(A) Pretreatment of ASM cells with 17-PTP (1 μM) for 15 minutes reduced isoproterenol-stimulated cAMP production. Data are mean ± SEM of 4 experiments. ##P = 0.02 versus vehicle-treated cells. (B) Isoproterenol caused a time-dependent internalization of β2AR in murine ASM cells over 30 minutes as assessed by whole-cell binding using the hydrophilic antagonist [3H]-CGP-12177; pretreatment with 17-PTP (1 μM for 15 min) had no effect on internalization. Data are mean ± SEM of 4 experiments. (C) EP1 receptor activation failed to phosphorylate β2AR or to alter isoproterenol-mediated β2AR phosphorylation in HEK 293 cells transfected to express β2AR and EP1 receptors. Shown is a representative autoradiogram of 4 experiments. PMA, phorbol-12-myristate-13-acetate. NTF, nontransfected.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts