Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis
Rajesh K. Thimmulappa, … , Thomas W. Kensler, Shyam Biswal
Rajesh K. Thimmulappa, … , Thomas W. Kensler, Shyam Biswal
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):984-995. https://doi.org/10.1172/JCI25790.
View: Text | PDF
Research Article

Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis

  • Text
  • PDF
Abstract

Host genetic factors that regulate innate immunity determine susceptibility to sepsis. Disruption of nuclear factor-erythroid 2–related factor 2 (Nrf2), a basic leucine zipper transcription factor that regulates redox balance and stress response, dramatically increased the mortality of mice in response to endotoxin- and cecal ligation and puncture–induced septic shock. LPS as well as TNF-α stimulus resulted in greater lung inflammation in Nrf2-deficient mice. Temporal analysis of pulmonary global gene expression after LPS challenge revealed augmented expression of large numbers of proinflammatory genes associated with the innate immune response at as early as 30 minutes in lungs of Nrf2-deficient mice, indicating severe immune dysregulation. The expression profile indicated that Nrf2 has a global influence on both MyD88-dependent and -independent signaling. Nrf2-deficient mouse embryonic fibroblasts showed greater activation of NF-κB and interferon regulatory factor 3 in response to LPS and polyinosinic-polycytidylic acid [poly(I:C)] stimulus, corroborating the effect of Nrf2 on MyD88-dependent and -independent signaling. Nrf2’s regulation of cellular glutathione and other antioxidants is critical for optimal NF-κB activation in response to LPS and TNF-α. Our study reveals Nrf2 as a novel modifier gene of sepsis that determines survival by mounting an appropriate innate immune response.

Authors

Rajesh K. Thimmulappa, Hannah Lee, Tirumalai Rangasamy, Sekhar P. Reddy, Masayuki Yamamoto, Thomas W. Kensler, Shyam Biswal

×

Figure 1

Nrf2–/– mice were more sensitive to LPS and septic peritonitis–induced septic shock.

Options: View larger image (or click on image) Download as PowerPoint

            Nrf2–/–
            mice were more sensitive to LPS and sep...
(A and B) Mortality after LPS administration. Age-matched male Nrf2+/+ (n = 10) and Nrf2–/– mice (n = 10) were injected i.p. with LPS (0.75 and 1.5 mg per mouse). (C) Acute septic peritonitis was induced by CLP. CLP and sham operations were performed as described in Methods on age-matched male Nrf2+/+ (n = 10) and Nrf2–/– mice (n = 10). Mortality was assessed every 12 hours for 5 days. *Nrf2+/+ mice showed improved survival compared wi Nrf2–/– mice. P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts