Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Toll-like receptor 2 controls expansion and function of regulatory T cells
Roger P.M. Sutmuller, … , Mihai G. Netea, Gosse J. Adema
Roger P.M. Sutmuller, … , Mihai G. Netea, Gosse J. Adema
Published February 1, 2006
Citation Information: J Clin Invest. 2006;116(2):485-494. https://doi.org/10.1172/JCI25439.
View: Text | PDF
Research Article Immunology

Toll-like receptor 2 controls expansion and function of regulatory T cells

  • Text
  • PDF
Abstract

Tregs play a central role in the suppression of immune reactions and prevention of autoimmune responses harmful to the host. During acute infection, however, Tregs might hinder effector T cell activity directed toward the elimination of the pathogenic challenge. Pathogen recognition receptors from the TLR family expressed by innate immune cells are crucial for the generation of effective immunity. We have recently shown the CD4+CD25+ Treg subset in TLR2–/– mice to be significantly reduced in number compared with WT littermate control mice, indicating a link between Tregs and TLR2. Here, we report that the TLR2 ligand Pam3Cys, but not LPS (TLR4) or CpG (TLR9), directly acts on purified Tregs in a MyD88-dependent fashion. Moreover, when combined with TCR stimulation, TLR2 triggering augmented Treg proliferation in vitro and in vivo and resulted in a temporal loss of the suppressive Treg phenotype in vitro by directly affecting Tregs. Importantly, WT Tregs adoptively transferred into TLR2–/– mice were neutralized by systemic administration of TLR2 ligand during the acute phase of a Candida albicans infection, resulting in a 100-fold reduced C. albicans outgrowth. This demonstrates that in vivo TLR2 also controls the function of Tregs and establishes a direct link between TLRs and the control of immune responses through Tregs.

Authors

Roger P.M. Sutmuller, Martijn H.M.G.M. den Brok, Matthijs Kramer, Erik J. Bennink, Liza W.J. Toonen, Bart-Jan Kullberg, Leo A. Joosten, Shizuo Akira, Mihai G. Netea, Gosse J. Adema

×

Figure 8

TLR2 controls Treg suppressor function in vivo.

Options: View larger image (or click on image) Download as PowerPoint
TLR2 controls Treg suppressor function in vivo.
(A) TLR2 and TCR trigger...
(A) TLR2 and TCR triggering cooperate to induce Treg expansion in vivo. TLR2–/– mice were reconstituted with 2 × 106 freshly isolated and CFSE-labeled OT-II–transgenic Tregs (TCR of OT-II transgenic T cells is Vα2 and specific for the OVA-peptide presented in I-Ab). The reconstituted mice were subsequently challenged i.p. with either PAM (20 μg/mouse) or OVA-peptide [OVA-pep] (10 μg/mouse) alone or with the combination of PAM and OVA-peptide. After 4 days, splenocytes were isolated and analyzed by flow cytometry for CFSE-fluorescent signal of the infused cells. The cells shown are gated for the CD4+, Vα2+, CFSE+ cells, and propidium iodide–positive (death) cells were excluded from the analysis. The value indicates the percentage of cells within the proliferative fraction (>1 division). (B and C) TLR2 triggering abrogates Treg-mediated suppression of anti–C.albicans immunity in vivo. TLR2–/– mice (5 per group) were reconstituted with 4 × 106 WT PAM–expanded Tregs (B) or conventional Th cells (C) and challenged i.v. with 105 live C.albicans cells 1 day later (day 0). If indicated, mice received an i.p. injection of 100 μl saline (controls) or 20 μg PAM/100 μl saline on days –1, 1, 3, and 5. SEVEN days after the challenge, C.albicans outgrowth (CFU/g tissue ± SEM) from kidneys was monitored. (D) Ex vivo IFN-γ production (± SEM) by C.albicans–stimulated splenocytes was measured as described in Methods. Representative results of 2 independent experiments are shown. *P < 0.05 with TLR2–/– control.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts