Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Antisense oligonucleotide therapy for neurodegenerative disease
Richard A. Smith, … , C. Frank Bennett, Don W. Cleveland
Richard A. Smith, … , C. Frank Bennett, Don W. Cleveland
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2290-2296. https://doi.org/10.1172/JCI25424.
View: Text | PDF
Research Article Neuroscience

Antisense oligonucleotide therapy for neurodegenerative disease

  • Text
  • PDF
Abstract

Neurotoxicity from accumulation of misfolded/mutant proteins is thought to drive pathogenesis in neurodegenerative diseases. Since decreasing levels of proteins responsible for such accumulations is likely to ameliorate disease, a therapeutic strategy has been developed to downregulate almost any gene in the CNS. Modified antisense oligonucleotides, continuously infused intraventricularly, have been demonstrated to distribute widely throughout the CNS of rodents and primates, including the regions affected in the major neurodegenerative diseases. Using this route of administration, we found that antisense oligonucleotides to superoxide dismutase 1 (SOD1), one of the most abundant brain proteins, reduced both SOD1 protein and mRNA levels throughout the brain and spinal cord. Treatment initiated near onset significantly slowed disease progression in a model of amyotrophic lateral sclerosis (ALS) caused by a mutation in SOD1. This suggests that direct delivery of antisense oligonucleotides could be an effective, dosage-regulatable means of treating neurodegenerative diseases, including ALS, where appropriate target proteins are known.

Authors

Richard A. Smith, Timothy M. Miller, Koji Yamanaka, Brett P. Monia, Thomas P. Condon, Gene Hung, Christian S. Lobsiger, Chris M. Ward, Melissa McAlonis-Downes, Hongbing Wei, Ed V. Wancewicz, C. Frank Bennett, Don W. Cleveland

×

Figure 4

Antisense oligonucleotides complementary to humanSOD1 mRNA decrease SOD1 protein levels in SOD1G93A rat liver and spinal cord.

Options: View larger image (or click on image) Download as PowerPoint

                  Antisense oligonucleotides complementary to humanSOD1...
(A) An oligonucleotide active against human SOD1 mRNA as well as a rat mRNA–specific oligonucleotide (SODr146192) was injected intraperitoneally 3 times per week (37.5 mg/kg at a concentration of 3 M) into adult rats expressing a low copy number human SOD1G93A transgene (line L26L; ref. 27). After 3 weeks, liver extracts were prepared and analyzed by immunoblotting using an antibody that recognizes rat and human SOD1 with equal affinity (18). (B–D) Antisense oligonucleotides complementary to human SOD1 mRNA were infused into the right lateral ventricle of 65-day-old SOD1G93A rats at 100 μg/d for 28 days. (B) RNA was prepared from tissue extracts, and SOD1 RNA levels were measured by real-time RT-PCR. (C and D) Protein levels for SOD1 and α-tubulin were analyzed in parallel extracts by immunoblotting with an antibody recognizing human and rat SOD1 with equal affinity (C) and were quantified for cervical cord (D). *P < 0.05 versus SODscrambled; Student’s t test. Mean ± SD are shown (n = 4 [SODscrambled]; 8 [SODr/h333611]).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts