Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
A role for docosahexaenoic acid–derived neuroprotectin D1 in neural cell survival and Alzheimer disease
Walter J. Lukiw, … , Charles N. Serhan, Nicolas G. Bazan
Walter J. Lukiw, … , Charles N. Serhan, Nicolas G. Bazan
Published October 3, 2005
Citation Information: J Clin Invest. 2005;115(10):2774-2783. https://doi.org/10.1172/JCI25420.
View: Text | PDF
Research Article Neuroscience

A role for docosahexaenoic acid–derived neuroprotectin D1 in neural cell survival and Alzheimer disease

  • Text
  • PDF
Abstract

Deficiency in docosahexaenoic acid (DHA), a brain-essential omega-3 fatty acid, is associated with cognitive decline. Here we report that, in cytokine-stressed human neural cells, DHA attenuates amyloid-β (Aβ) secretion, an effect accompanied by the formation of NPD1, a novel, DHA-derived 10,17S-docosatriene. DHA and NPD1 were reduced in Alzheimer disease (AD) hippocampal cornu ammonis region 1, but not in the thalamus or occipital lobes from the same brains. The expression of key enzymes in NPD1 biosynthesis, cytosolic phospholipase A2 and 15-lipoxygenase, was altered in AD hippocampus. NPD1 repressed Aβ42-triggered activation of proinflammatory genes while upregulating the antiapoptotic genes encoding Bcl-2, Bcl-xl, and Bfl-1(A1). Soluble amyloid precursor protein-α stimulated NPD1 biosynthesis from DHA. These results indicate that NPD1 promotes brain cell survival via the induction of antiapoptotic and neuroprotective gene-expression programs that suppress Aβ42-induced neurotoxicity.

Authors

Walter J. Lukiw, Jian-Guo Cui, Victor L. Marcheselli, Merete Bodker, Anja Botkjaer, Katherine Gotlinger, Charles N. Serhan, Nicolas G. Bazan

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Aβ42-induced apoptosis is inhibited by NPD1 in HN cells. After 3 weeks i...
Aβ42-induced apoptosis is inhibited by NPD1 in HN cells. After 3 weeks in culture, HN cells were treated with DMEM/F12 (control), Aβ42 (8 μM) in DMEM/F12 (Aβ42), or Aβ42 (8 μM) plus NPD1 (50 nM) (Aβ42+NPD1) in DMEM/F12 for 3.5 days, then stained with Hoechst 33258 (Hoechst), anti–βIII tubulin (βIII tubulin), and anti-GFAP (GFAP), and all 3 stains were imaged together (merge A). As revealed by Hoechst staining, in controls, relatively few compact nuclei were observed; in Aβ42-treated cells, many compact nuclei were seen (white arrows). In Aβ42-treated cells, neurons and glia clumped together with condensed cytoplasm and damaged nuclei, and both βIII tubulin and GFAP staining was reduced (compare merges of control, Aβ42, and Aβ42+NPD1-treated cells). When NPD1 was added to Aβ42-treated cells, Hoechst staining revealed many fewer compacted nuclei. Each field under columns marked βIII tubulin, GFAP, and merge A represents approximately 0.1 mm2. A comparison of control, Aβ42-treated, and Aβ42+NPD1-treated HN cells at higher magnification, stained with Hoechst 33258 (blue), anti–βIII tubulin (red), and anti-GFAP (green), shows that Aβ42-induced apoptosis is associated with both neuronal and glial nuclei (merge B), and that Aβ42+NPD1-treated HN cells show significantly decreased numbers of compacted apoptotic nuclei (yellow arrows).

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts