Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions
Adam M. Boruchov, Glenn Heller, Maria-Concetta Veri, Ezio Bonvini, Jeffrey V. Ravetch, James W. Young
Adam M. Boruchov, Glenn Heller, Maria-Concetta Veri, Ezio Bonvini, Jeffrey V. Ravetch, James W. Young
View: Text | PDF
Research Article Immunology

Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions

  • Text
  • PDF
Abstract

Human monocyte-derived DCs (moDCs) and circulating conventional DCs coexpress activating (CD32a) and inhibitory (CD32b) isoforms of IgG Fcγ receptor (FcγR) II (CD32). The balance between these divergent receptors establishes a threshold of DC activation and enables immune complexes to mediate opposing effects on DC maturation and function. IFN-γ most potently favors CD32a expression on immature DCs, whereas soluble antiinflammatory concentrations of monomeric IgG have the opposite effect. Ligation of CD32a leads to DC maturation, increased stimulation of allogeneic T cells, and enhanced secretion of inflammatory cytokines, with the exception of IL-12p70. Coligation of CD32b limits activation through CD32a and hence reduces the immunogenicity of moDCs even for a strong stimulus like alloantigen. Targeting CD32b alone does not mature or activate DCs but rather maintains an immature state. Coexpression of activating and inhibitory FcγRs by DCs reveals a homeostatic checkpoint for inducing tolerance or immunity by immune complexes. These findings have important implications for understanding the pathophysiology of immune complex diseases and for optimizing the efficacy of therapeutic mAbs. The data also suggest novel strategies for targeting antigens to the activating or inhibitory FcγRs on human DCs to generate either antigen-specific immunity or tolerance.

Authors

Adam M. Boruchov, Glenn Heller, Maria-Concetta Veri, Ezio Bonvini, Jeffrey V. Ravetch, James W. Young

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
Targeting CD32a or CD32b affects DC allostimulatory capacity in the MLR....
Targeting CD32a or CD32b affects DC allostimulatory capacity in the MLR. Two days after ligating CD32a, CD32b, both, or neither on immature moDCs, the moDCs were harvested and washed. These moDCs were then recultured at varying doses with 105 allogeneic T cells in triplicate round-bottomed 96-microwell plates without additional cytokines. DC doses ranged from 3,000 to 300 cells per well, yielding DC:T cell ratios from 1:30 to 1:300. [3H]TdR uptake by proliferating allogeneic T cells over the last 12 hours of a 4–5 day culture was measured as an index of DC immunogenicity. (A) The averaged triplicate values (mean ± SEM) for [3H]TdR incorporation by T cells stimulated in 4 independent experiments using samples derived from CD32a131HH or -HR donors are depicted logarithmically (log2) on the y-axis. (B) Experiments using samples from CD32a131RR donors were performed in parallel, with immobilized mouse or human IgG ligating FcγRs on the immature moDCs. The averaged triplicate values (mean ± SEM) from 3 independent experiments are depicted logarithmically (log2) on the y axis. Differences between conditions in A and B were tested using a stratified (by DC:T cell ratios) permutation t test.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts