Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oxygen, oxidative stress, hypoxia, and heart failure
Frank J. Giordano
Frank J. Giordano
Published March 1, 2005
Citation Information: J Clin Invest. 2005;115(3):500-508. https://doi.org/10.1172/JCI24408.
View: Text | PDF
Review Series

Oxygen, oxidative stress, hypoxia, and heart failure

  • Text
  • PDF
Abstract

A constant supply of oxygen is indispensable for cardiac viability and function. However, the role of oxygen and oxygen-associated processes in the heart is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death. As oxygen is a major determinant of cardiac gene expression, and a critical participant in the formation of ROS and numerous other cellular processes, consideration of its role in the heart is essential in understanding the pathogenesis of cardiac dysfunction.

Authors

Frank J. Giordano

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Transcriptional gene regulation by the hypoxia-inducible factor HIF-1α. ...
Transcriptional gene regulation by the hypoxia-inducible factor HIF-1α. HIF-1α protein undergoes rapid prolyl hydroxylation under normoxic conditions by specific cellular prolyl hydroxylases. Direct hydroxylation by ROS is a purported alternative pathway. Hydroxylated HIF interacts with the VHL, a critical member of an E3 ubiquitin ligase complex that polyubiquitylates HIF (Ub, ubiquitin). Polyubiquitylation targets HIF-1α for destruction by the proteosome. Under hypoxia (¬O2) hydroxylation does not occur and HIF-1α is stabilized. Heterodimerization with ARNT forms the active HIF complex that binds to a core hypoxia response element in a wide array of genes involved in a diversity of biological processes germane to cardiovascular function. Transcriptional activation of iNOS expression is shown as an example of how HIF-mediated gene expression can affect ROS generation by generating NO that interacts with O2–– to form ONOO––. NOX2 is shown as a cellular source of O2––.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts