Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
An interstitial deletion-insertion involving chromosomes 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism
Michael R. Bowl, … , Michael P. Whyte, Rajesh V. Thakker
Michael R. Bowl, … , Michael P. Whyte, Rajesh V. Thakker
Published October 3, 2005
Citation Information: J Clin Invest. 2005;115(10):2822-2831. https://doi.org/10.1172/JCI24156.
View: Text | PDF
Research Article Genetics

An interstitial deletion-insertion involving chromosomes 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism

  • Text
  • PDF
Abstract

X-linked recessive hypoparathyroidism, due to parathyroid agenesis, has been mapped to a 906-kb region on Xq27 that contains 3 genes (ATP11C, U7snRNA, and SOX3), and analyses have not revealed mutations. We therefore characterized this region by combined analysis of single nucleotide polymorphisms and sequence-tagged sites. This identified a 23- to 25-kb deletion, which did not contain genes. However, DNA fiber–FISH and pulsed-field gel electrophoresis revealed an approximately 340-kb insertion that replaced the deleted fragment. Use of flow-sorted X chromosome–specific libraries and DNA sequence analyses revealed that the telomeric and centromeric breakpoints on X were, respectively, approximately 67 kb downstream of SOX3 and within a repetitive sequence. Use of a monochromosomal somatic cell hybrid panel and metaphase-FISH mapping demonstrated that the insertion originated from 2p25 and contained a segment of the SNTG2 gene that lacked an open reading frame. However, the deletion-insertion [del(X)(q27.1) inv ins (X;2)(q27.1;p25.3)], which represents a novel abnormality causing hypoparathyroidism, could result in a position effect on SOX3 expression. Indeed, SOX3 expression was demonstrated, by in situ hybridization, in the developing parathyroid tissue of mouse embryos between 10.5 and 15.5 days post coitum. Thus, our results indicate a likely new role for SOX3 in the embryonic development of the parathyroid glands.

Authors

Michael R. Bowl, M. Andrew Nesbit, Brian Harding, Elaine Levy, Andrew Jefferson, Emanuela Volpi, Karine Rizzoti, Robin Lovell-Badge, David Schlessinger, Michael P. Whyte, Rajesh V. Thakker

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
Molecular mechanism underlying the deletion-insertion abnormality involv...
Molecular mechanism underlying the deletion-insertion abnormality involving chromosomes Xq27 and 2p25 in X-linked recessive HPT. The relationships of the deletion-insertion to that of BACs (Figures 1 and 4) from chromosomes 2p25 (CTD-2029L3, RP11-1268F2, XXfos-83269E11, RP13-932E12, RP11-1294H20, and RP13-542C4) and Xq27 (RP11-51C14) are shown. DNA sequence database analyses together with a characterization of the DNA sequences of the breakpoints (Figures 2 and 3) in X-linked recessive HPT patients established that the deletion within Xq27.1 extends approximately 23–25 kb and that the insertion from chromosome 2p25.3, which inverted upon insertion, extends approximately 305–340 kb and includes exons 2–16 of the SNTG2 gene. The location of this deletion-insertion is approximately 67 kb downstream of the gene encoding SOX3, which belongs to a family of transcription factors that are involved in vertebrate embryonic development (13). For example, abnormalities of SOX3 expression are associated with developmental anomalies involving the CNS, craniofacial bones, and pituitary (15–18, 41), while abnormalities of SRY expression are associated with disorders of sexual development (49). It is likely that the deletion-insertion causes a disruption of SOX3 regulatory elements and thereby exerts a position effect on SOX3 expression.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts