Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals
Jian-Su Shao, Su-Li Cheng, Joyce M. Pingsterhaus, Nichole Charlton-Kachigian, Arleen P. Loewy, Dwight A. Towler
Jian-Su Shao, Su-Li Cheng, Joyce M. Pingsterhaus, Nichole Charlton-Kachigian, Arleen P. Loewy, Dwight A. Towler
View: Text | PDF
Article Cardiology

Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals

  • Text
  • PDF
Abstract

In diabetic LDLR–/– mice, an ectopic BMP2-Msx2 gene regulatory program is upregulated in association with vascular calcification. We verified the procalcific actions of aortic Msx2 expression in vivo. CMV-Msx2 transgenic (CMV-Msx2Tg+) mice expressed 3-fold higher levels of aortic Msx2 than nontransgenic littermates. On high-fat diets, CMV-Msx2Tg+ mice exhibited marked cardiovascular calcification involving aortic and coronary tunica media. This corresponded to regions of Msx2 immunoreactivity in adjacent adventitial myofibroblasts, suggesting a potential paracrine osteogenic signal. To better understand Msx2-regulated calcification, we studied actions in 10T1/2 cells. We found that conditioned media from Msx2-transduced 10T1/2 cells (Msx2-CM) is both pro-osteogenic and adipostatic; these features are characteristic of Wnt signaling. Msx2-CM stimulated Wnt-dependent TCF/LEF transcription, and Msx2-transduced cells exhibited increased nuclear β-catenin localization with concomitant alkaline phosphatase induction. Msx2 upregulated Wnt3a and Wnt7a but downregulated expression of the canonical inhibitor Dkk1. Dkk1 treatment reversed osteogenic and adipostatic actions of Msx2. Teriparatide, a PTH1R agonist that inhibits murine vascular calcification, suppressed vascular BMP2-Msx2-Wnt signaling. Analyses of CMV-Msx2Tg+ mice confirmed that Msx2 suppresses aortic Dkk1 and upregulates vascular Wnts; moreover, TOPGAL+ (Wnt reporter); CMV-Msx2Tg+ mice exhibited augmented aortic LacZ expression. Thus, Msx2-expressing cells elaborated an osteogenic milieu that promotes vascular calcification in part via paracrine Wnt signals.

Authors

Jian-Su Shao, Su-Li Cheng, Joyce M. Pingsterhaus, Nichole Charlton-Kachigian, Arleen P. Loewy, Dwight A. Towler

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
Regulation of TCF/LEF1 activity and β-catenin by Msx2 in 10T1/2 cells. (...
Regulation of TCF/LEF1 activity and β-catenin by Msx2 in 10T1/2 cells. (A) 10T1/2 cells were transfected with the TOPFLASH reporter and treated with either CM from control cells expressing LacZ or CM from cells expressing Msx2. Cell extracts were analyzed for LUC reporter activity. Cells treated with CM from Msx2-transduced cells supported higher levels of TOPFLASH activity than cells treated with control CM. *P < 0.05. (B) 10T1/2 cells were transiently transfected with TOPLASH and harvested 1 day layer; these reporter cells (57,000 cells per well) parachuted onto feed layers of SFG-LacZ or SFG-Msx2 cell cultures (20,000 cells per well) and were harvested for determination of LUC reporter activity 24 hours later. SFG-Msx2 feeder layers supported higher levels of TOPFLASH activity than SFG-LacZ controls. **P < 0.001. (C) Subcellular localization of β-catenin in control (LacZ) cells compared with that in cells expressing Msx2. While excluded from the nucleus in control cells, β-catenin accumulates in the nucleus of cultured cells expressing Msx2. (D) As quantified from digital images, the percentage of cells staining for nuclear β-catenin is enhanced approximately 15-fold by Msx2.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts