Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
An affinity/avidity model of peripheral T cell regulation
Hong Jiang, Yilun Wu, Bitao Liang, Zongyu Zheng, Guomei Tang, Jean Kanellopoulos, Mark Soloski, Robert Winchester, Itamar Goldstein, Leonard Chess
Hong Jiang, Yilun Wu, Bitao Liang, Zongyu Zheng, Guomei Tang, Jean Kanellopoulos, Mark Soloski, Robert Winchester, Itamar Goldstein, Leonard Chess
View: Text | PDF
Article Immunology

An affinity/avidity model of peripheral T cell regulation

  • Text
  • PDF
Abstract

We show in these studies that Qa-1–dependent CD8+ T cells are involved in the establishment and maintenance of peripheral self tolerance as well as facilitating affinity maturation of CD4+ T cells responding to foreign antigen. We provide experimental evidence that the strategy used by the Qa-1–dependent CD8+ T cells to accomplish both these tasks in vivo is to selectively downregulate T cell clones that respond to both self and foreign antigens with intermediate, not high or low, affinity/avidity. Thus, the immune system evolved to regulate peripheral immunity using a unified mechanism that efficiently and effectively permits the system to safeguard peripheral self tolerance yet promote the capacity to deal with foreign invaders.

Authors

Hong Jiang, Yilun Wu, Bitao Liang, Zongyu Zheng, Guomei Tang, Jean Kanellopoulos, Mark Soloski, Robert Winchester, Itamar Goldstein, Leonard Chess

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Qa-1–dependent CD8+ T cells are involved in the establishment and mainte...
Qa-1–dependent CD8+ T cells are involved in the establishment and maintenance of peripheral self tolerance to HEL in HEL Tg mice. (A) The unresponsiveness to HEL in HEL high Tg mice could be broken by treatment with anti-CD8 and anti–Qa-1 mAbs. HEL immunization and in vivo mAb treatment were performed and CD4+ T cells were purified from pooled draining lymph node cells from different groups of mice and assayed in a T cell proliferation assay as described in Methods. Data are representative of 4 separate experiments with 2–4 mice per group. (B) CD8+ T cells regulate immune response to self antigen HEL in HEL low Tg mice. Experiments were performed as described in Methods. Data are representative of 6 separate experiments with 2–4 mice per group. (C) CD8+ T cells downregulate the primary immune responses to HEL in HEL low Tg mice when adoptively transferred. CD8+ T cells were injected i.v. into recipient mice, and the mice were immunized with HEL 1 day later. The CD4+ T cells were isolated from pooled lymph node cells of recipient mice 7–9 days after the immunization, and T cell proliferation assays were performed. Data are representative of 4 separate experiments with 2–4 mice per group. Control, no transfer; n/LTg, CD8+ T cells transferred from naive HEL low Tg mice; HEL/LTg, CD8+ T cells transferred from 2– HEL-immunized HEL low Tg mice; n/HTg, CD8+ T cells transferred from naive HEL high Tg mice; HEL/HTg, CD8+ T cells transferred from 1– HEL-immunized HEL high Tg mice. 3HTdr, 3H-thymidine.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts