Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Human cardiac potassium channel DNA polymorphism modulates access to drug-binding site and causes drug resistance
Benoit Drolet, … , Laura Mizoue, Dan M. Roden
Benoit Drolet, … , Laura Mizoue, Dan M. Roden
Published August 1, 2005
Citation Information: J Clin Invest. 2005;115(8):2209-2213. https://doi.org/10.1172/JCI23741.
View: Text | PDF
Research Article Cardiology

Human cardiac potassium channel DNA polymorphism modulates access to drug-binding site and causes drug resistance

  • Text
  • PDF
Abstract

Expression of voltage-gated K+ channel, shaker-related subfamily, member 5 (KCNA5) underlies the human atrial ultra-rapid delayed rectifier K+ current (IKur). The KCNA5 polymorphism resulting in P532L in the C terminus generates IKur that is indistinguishable from wild type at baseline but strikingly resistant to drug block. In the present study, truncating the C terminus of KCNA5 generated a channel with wild-type drug sensitivity, which indicated that P532 is not a drug-binding site. Secondary structure prediction algorithms identified a probable α-helix in P532L that is absent in wild-type channels. We therefore assessed drug sensitivity of IKur generated in vitro in CHO and HEK cells by channels predicted to exhibit or lack this C-terminal α-helix. All constructs displayed near-identical IKur in the absence of drug challenge. However, those predicted to lack the C-terminal α-helix generated quinidine-sensitive currents (43–51% block by 10 μM quinidine), while the currents generated by those constructs predicted to generate a C-terminal α-helix were inhibited less than 12%. Circular dichroism spectroscopy revealed an α-helical signature with peptides derived from drug-resistant channels and no organized structure in those associated with wild-type drug sensitivity. In conclusion, we found that this secondary structure in the KCNA5 C terminus, absent in wild-type channels but generated by a naturally occurring DNA polymorphism, does not alter baseline currents but renders the channel drug resistant. Our data support a model in which this structure impairs access of the drug to a pore-binding site.

Authors

Benoit Drolet, Chantale Simard, Laura Mizoue, Dan M. Roden

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of KCNA5 with its intracellular S6 drug binding...
Schematic representation of KCNA5 with its intracellular S6 drug binding site, indicated by arrows. The right panel illustrates the concept that generation of a C-terminal α-helical secondary structure in the P532L variant (black dot) would restrict access of the drug to the S6 binding site.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts