Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Fusion of bone marrow–derived stem cells with striated muscle may not be sufficient to activate muscle genes
Giulio Cossu
Giulio Cossu
Published December 1, 2004
Citation Information: J Clin Invest. 2004;114(11):1540-1543. https://doi.org/10.1172/JCI23733.
View: Text | PDF
Commentary

Fusion of bone marrow–derived stem cells with striated muscle may not be sufficient to activate muscle genes

  • Text
  • PDF
Abstract

Several studies have demonstrated the existence of pluripotent bone marrow–derived stem cells capable of homing to injured cardiac and skeletal muscle; however, there has been little evidence demonstrating the induction of tissue-specific endogenous genes in donor stem cells following engraftment. A new study in this issue reports an intriguing finding that raises additional concerns relating to stem cell plasticity and stem cell therapy in an already heated and controversial field. The study demonstrates that wild-type bone marrow–derived side population stem cells are indeed readily incorporated into both skeletal and cardiac muscle when transplanted into mice that lack δ-sarcoglycan — a model of cardiomyopathy and muscular dystrophy. However, these cells fail to express sarcoglycan and thus to repair the tissue, which suggests that this stem cell population has limited potential for cardiac and skeletal muscle regeneration.

Authors

Giulio Cossu

×

Full Text PDF | Download (363.60 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts