Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Arterial and renal consequences of partial genetic deficiency in tissue kallikrein activity in humans
Michel Azizi, … , François Alhenc-Gelas, Xavier Jeunemaitre
Michel Azizi, … , François Alhenc-Gelas, Xavier Jeunemaitre
Published March 1, 2005
Citation Information: J Clin Invest. 2005;115(3):780-787. https://doi.org/10.1172/JCI23669.
View: Text | PDF
Article Cardiology

Arterial and renal consequences of partial genetic deficiency in tissue kallikrein activity in humans

  • Text
  • PDF
Abstract

Tissue kallikrein (TK), the major kinin-forming enzyme, is synthesized in several organs, including the kidney and arteries. A loss-of-function polymorphism of the human TK gene (R53H) induces a substantial decrease in enzyme activity. As inactivation of the TK gene in the mouse induces endothelial dysfunction, we investigated the vascular, hormonal, and renal phenotypes of carriers of the 53H allele. In a crossover study, 30 R53R-homozygous and 10 R53H-heterozygous young normotensive white males were randomly assigned to receive both a low sodium–high potassium diet to stimulate TK synthesis and a high sodium–low potassium diet to suppress TK synthesis, each for 1 week. Urinary kallikrein activity was 50–60% lower in R53H subjects than in R53R subjects. Acute flow-dependent vasodilatation and endothelium-independent vasodilatation of the brachial artery were both unaffected in R53H subjects. In contrast, R53H subjects consistently exhibited an increase in wall shear stress and a paradoxical reduction in artery diameter and lumen compared with R53R subjects. Renal and hormonal adaptation to diets was unaffected in R53H subjects. The partial genetic deficiency in TK activity is associated with an inward remodeling of the brachial artery, which is not adapted to a chronic increase in wall shear stress, indicating a new form of arterial dysfunction affecting 5–7% of white people.

Authors

Michel Azizi, Pierre Boutouyrie, Alvine Bissery, Mohsen Agharazii, Francis Verbeke, Nora Stern, Alessandra Bura-Rivière, Stéphane Laurent, François Alhenc-Gelas, Xavier Jeunemaitre

×
Options: View larger image (or click on image) Download as PowerPoint
UKLKa and Na+ and K+ excretion

UKLKa and Na+ and K+ excretion


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts