Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

An in vitro model for cytogenetic conversion in CML. Interferon-alpha preferentially inhibits the outgrowth of malignant stem cells preserved in long-term culture.
J J Cornelissen, … , A Hagemeijer, B Löwenberg
J J Cornelissen, … , A Hagemeijer, B Löwenberg
Published September 1, 1998
Citation Information: J Clin Invest. 1998;102(5):976-983. https://doi.org/10.1172/JCI2366.
View: Text | PDF
Research Article

An in vitro model for cytogenetic conversion in CML. Interferon-alpha preferentially inhibits the outgrowth of malignant stem cells preserved in long-term culture.

  • Text
  • PDF
Abstract

IFN-alpha has been shown to prolong survival in chronic myeloid leukemia patients, but its mechanism of action is still not understood. The human cobblestone area-forming cell (CAFC) assay allows for the measurement of the concentration of normal as well as malignant stem cells, while their progeny can be measured in parallel long-term culture (LTC) in flasks. Using CAFC and LTC assays, we have examined direct effects of IFN-alpha (500; 5,000 IU/ml) on the maintenance and outgrowth of CD34-enriched normal and malignant stem cells, obtained from six patients with an established major cytogenetic response to IFN-alpha and from four nonresponding patients. CAFC concentrations were not affected by IFN-alpha. In contrast, IFN-alpha strongly inhibited the clonogenic output in flask LTC. Nucleated cells (NC) produced in LTC were evaluated by fluorescent in situ hybridization (FISH) for the presence of the Philadelphia (Ph) translocation. After 8 wk of LTC, the percentage of Ph+ NCs produced was significantly more inhibited by IFN-alpha in responding patients than in nonresponders. Control LTC without IFN-alpha showed no significant differences of Ph+ NC production between responders and nonresponders. These findings provide the first in vitro model for cytogenetic conversion and suggest that direct antiproliferative effects of IFN-alpha account for the cytogenetic response observed clinically.

Authors

J J Cornelissen, R E Ploemacher, B W Wognum, A Borsboom, H C Kluin-Nelemans, A Hagemeijer, B Löwenberg

×

Loading citation information...
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts