Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
FGF-21 as a novel metabolic regulator
Alexei Kharitonenkov, … , S. Richard Jaskunas, Armen B. Shanafelt
Alexei Kharitonenkov, … , S. Richard Jaskunas, Armen B. Shanafelt
Published June 1, 2005
Citation Information: J Clin Invest. 2005;115(6):1627-1635. https://doi.org/10.1172/JCI23606.
View: Text | PDF
Research Article Metabolism

FGF-21 as a novel metabolic regulator

  • Text
  • PDF
Abstract

Diabetes mellitus is a major health concern, affecting more than 5% of the population. Here we describe a potential novel therapeutic agent for this disease, FGF-21, which was discovered to be a potent regulator of glucose uptake in mouse 3T3-L1 and primary human adipocytes. FGF-21–transgenic mice were viable and resistant to diet-induced obesity. Therapeutic administration of FGF-21 reduced plasma glucose and triglycerides to near normal levels in both ob/ob and db/db mice. These effects persisted for at least 24 hours following the cessation of FGF-21 administration. Importantly, FGF-21 did not induce mitogenicity, hypoglycemia, or weight gain at any dose tested in diabetic or healthy animals or when overexpressed in transgenic mice. Thus, we conclude that FGF-21, which we have identified as a novel metabolic factor, exhibits the therapeutic characteristics necessary for an effective treatment of diabetes.

Authors

Alexei Kharitonenkov, Tatiyana L. Shiyanova, Anja Koester, Amy M. Ford, Radmila Micanovic, Elizabeth J. Galbreath, George E. Sandusky, Lisa J. Hammond, Julie S. Moyers, Rebecca A. Owens, Jesper Gromada, Joseph T. Brozinick, Eric D. Hawkins, Victor J. Wroblewski, De-Shan Li, Farrokh Mehrbod, S. Richard Jaskunas, Armen B. Shanafelt

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
FGF-21 injection studies in rodents. The values (± SE) shown are the ave...
FGF-21 injection studies in rodents. The values (± SE) shown are the average of the measurements of at least 5 animals in a group. *P < 0.05, **P < 0.02, and #P < 0.001 compared with vehicle control. Fed blood glucose (A) and triglyceride levels (B) in ob/ob mice treated with FGF-21. FGF-21 was administered once daily, and blood glucose and triglyceride levels were measured 1 hour after the last injection. (C) Fed blood glucose levels in db/db mice at days 18 and 46 during 8-week constant-infusion study. Mice were infused s.c. with 11 μg/kg/h FGF-21 using ALZET minipumps. (D and E) FGF-21 lowers glucose in obese ZDF rats and does not induce hypoglycemia in lean ZDF rats. Fed blood glucose levels were measured in obese (D) and lean (E) ZDF rats that were administered s.c. twice daily with FGF-21, Humulin, or vehicle at indicated total daily doses for 1 week. (F) FGF-21 induces extended lowering of fed blood glucose in ob/ob mice. FGF-21 was administered once daily for 7 days, and blood glucose levels were measured after the last injection at indicated time points. (G and H) FGF-21 affects insulin levels (G) and glucose disposal (H) during OGTT in ob/ob mice. At indicated time points, blood samples were obtained for glucose and insulin measurements.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts