Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
FGF-21 as a novel metabolic regulator
Alexei Kharitonenkov, … , S. Richard Jaskunas, Armen B. Shanafelt
Alexei Kharitonenkov, … , S. Richard Jaskunas, Armen B. Shanafelt
Published June 1, 2005
Citation Information: J Clin Invest. 2005;115(6):1627-1635. https://doi.org/10.1172/JCI23606.
View: Text | PDF
Research Article Metabolism

FGF-21 as a novel metabolic regulator

  • Text
  • PDF
Abstract

Diabetes mellitus is a major health concern, affecting more than 5% of the population. Here we describe a potential novel therapeutic agent for this disease, FGF-21, which was discovered to be a potent regulator of glucose uptake in mouse 3T3-L1 and primary human adipocytes. FGF-21–transgenic mice were viable and resistant to diet-induced obesity. Therapeutic administration of FGF-21 reduced plasma glucose and triglycerides to near normal levels in both ob/ob and db/db mice. These effects persisted for at least 24 hours following the cessation of FGF-21 administration. Importantly, FGF-21 did not induce mitogenicity, hypoglycemia, or weight gain at any dose tested in diabetic or healthy animals or when overexpressed in transgenic mice. Thus, we conclude that FGF-21, which we have identified as a novel metabolic factor, exhibits the therapeutic characteristics necessary for an effective treatment of diabetes.

Authors

Alexei Kharitonenkov, Tatiyana L. Shiyanova, Anja Koester, Amy M. Ford, Radmila Micanovic, Elizabeth J. Galbreath, George E. Sandusky, Lisa J. Hammond, Julie S. Moyers, Rebecca A. Owens, Jesper Gromada, Joseph T. Brozinick, Eric D. Hawkins, Victor J. Wroblewski, De-Shan Li, Farrokh Mehrbod, S. Richard Jaskunas, Armen B. Shanafelt

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
FGF-21 stimulates phosphorylation in 3T3-L1 adipocytes. (A) FGF-21 induc...
FGF-21 stimulates phosphorylation in 3T3-L1 adipocytes. (A) FGF-21 induces phosphorylation of MAPK and FRS-2 in 3T3-L1 adipocytes. Upon stimulation, cells were lysed, and phospho-specific antibodies were used to determine phosphorylation of MAPK and FRS-2 in immunoblots. After immunoblots were stripped, anti-MAPK and anti–FRS-2 antibodies were used to confirm that protein loads were equal. For MAPK experiment, cells were stimulated with FGF-21 for the indicated times. For FRS-2 experiment, cells were stimulated with FGF-21 or FGF-1 (positive control). (B) FGF-21 stimulates tyrosine phosphorylation of FGFR-1 and FGFR-2 in 3T3-L1 adipocytes. Cells were stimulated with FGF-21 and lysed. FGFR-1 and FGFR-2 immunoprecipitates were analyzed in immunoblots with anti-phosphotyrosine antibodies. After stripping, anti–FGFR-1 and anti-FGFR-2 antibodies were used to confirm that protein loads were equal. pErk, phospho-Erk; PY, phosphotyrosine.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts