Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Going both ways: Immune regulation via CD1d-dependent NKT cells
Dale I. Godfrey, Mitchell Kronenberg
Dale I. Godfrey, Mitchell Kronenberg
Published November 15, 2004
Citation Information: J Clin Invest. 2004;114(10):1379-1388. https://doi.org/10.1172/JCI23594.
View: Text | PDF
Review Series

Going both ways: Immune regulation via CD1d-dependent NKT cells

  • Text
  • PDF
Abstract

NKT cells are a unique T lymphocyte sublineage that has been implicated in the regulation of immune responses associated with a broad range of diseases, including autoimmunity, infectious diseases, and cancer. In stark contrast to both conventional T lymphocytes and other types of Tregs, NKT cells are reactive to the nonclassical class I antigen–presenting molecule CD1d, and they recognize glycolipid antigens rather than peptides. Moreover, they can either up- or downregulate immune responses by promoting the secretion of Th1, Th2, or immune regulatory cytokines. This review will explore the diverse influences of these cells in various disease models, their ability to suppress or enhance immunity, and the potential for manipulating these cells as a novel form of immunotherapy.

Authors

Dale I. Godfrey, Mitchell Kronenberg

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 1,545 211
PDF 107 48
Figure 93 1
Table 63 0
Citation downloads 99 0
Totals 1,907 260
Total Views 2,167
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts