Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
IL-10–producing and naturally occurring CD4+ Tregs: limiting collateral damage
Anne O’Garra, … , Paulo Vieira, Anne E. Goldfeld
Anne O’Garra, … , Paulo Vieira, Anne E. Goldfeld
Published November 15, 2004
Citation Information: J Clin Invest. 2004;114(10):1372-1378. https://doi.org/10.1172/JCI23215.
View: Text | PDF
Review Series

IL-10–producing and naturally occurring CD4+ Tregs: limiting collateral damage

  • Text
  • PDF
Abstract

Effective immune responses against pathogens are sometimes accompanied by strong inflammatory reactions. To minimize damage to self, the activation of the immune system also triggers anti-inflammatory circuits. Both inflammatory and anti-inflammatory reactions are normal components of the same immune response, which coordinately fight infections while preventing immune pathology. IL-10 is an important suppressive cytokine, produced by a large number of immune cells in addition to the antigen-driven IL-10–producing regulatory and the naturally occurring suppressor CD4+ T cells, which is a key player in anti-inflammatory immune responses. However, additional mechanisms have evolved to ensure that pathogen eradication is achieved with minimum damage to the host. Here we discuss those mechanisms that operate to regulate effector immune responses.

Authors

Anne O’Garra, Pedro L. Vieira, Paulo Vieira, Anne E. Goldfeld

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Cross-regulation of effector Th responses and feedback inhibition of nai...
Cross-regulation of effector Th responses and feedback inhibition of naive T cell proliferation. IL-12 produced by the dendritic cell drives Th1 cells (IFN-γ). IL-4 produced by a variety of sources, including in some cases the naive T cell itself, drives Th2 cells to secrete cytokines (IL-4/IL-10). These effector subsets and the cytokines they produce or that drive them inhibit each other’s differentiation. Repetitive activation of effector Th cells with cognate antigen results in the differentiation of regulatory Th cells with inhibitory function via as-yet-unknown mechanisms. Proliferation of naive CD4+ T cells is controlled by inhibition of the antigen-presenting cell function of the DCs via both IL-10–dependent and IL-10–independent mechanisms. Green lines with arrows, activation/differentiation; red lines with block, inhibition.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts