Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Adenosine and ATP: traffic regulators in the kidney
Wilhelm Kriz
Wilhelm Kriz
Published September 1, 2004
Citation Information: J Clin Invest. 2004;114(5):611-613. https://doi.org/10.1172/JCI22669.
View: Text | PDF
Commentary

Adenosine and ATP: traffic regulators in the kidney

  • Text
  • PDF
Abstract

Glomerular filtration in the kidney is a continuous process that acts in concert with tubular reabsorption to prevent derangements of body fluid composition. Filtration is regulated by systemic factors, but it is also controlled by an intrinsic mechanism based on the anatomical connection between the distal nephron and the glomerular arterioles. Facing the threat of urinary salt loss, this mechanism causes vasoconstriction and reduces filtration by generating adenosine through the hydrolysis of nucleotide precursors such as 5′-AMP and possibly ATP .

Authors

Wilhelm Kriz

×

Full Text PDF | Download (254.16 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts