Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

5′ CArG degeneracy in smooth muscle α-actin is required for injury-induced gene suppression in vivo
Jennifer A. Hendrix, … , Tadashi Yoshida, Gary K. Owens
Jennifer A. Hendrix, … , Tadashi Yoshida, Gary K. Owens
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):418-427. https://doi.org/10.1172/JCI22648.
View: Text | PDF
Article Genetics

5′ CArG degeneracy in smooth muscle α-actin is required for injury-induced gene suppression in vivo

  • Text
  • PDF
Abstract

CC(A/T)6GG–dependent (CArG-dependent) and serum response factor–dependent (SRF-dependent) mechanisms are required for gene expression in smooth muscle cells (SMCs). However, an unusual feature of many SMC-selective promoter CArG elements is that they contain a conserved single G or C substitution in their central A/T-rich region, which reduces binding affinity for ubiquitously expressed SRF. We hypothesized that this CArG degeneracy contributes to cell-specific expression of smooth muscle α-actin in vivo, since substitution of c-fos consensus CArGs for the degenerate CArGs resulted in relaxed specificity in cultured cells. Surprisingly, our present results show that these substitutions have no effect on smooth muscle–specific transgene expression during normal development and maturation in transgenic mice. However, these substitutions significantly attenuated injury-induced downregulation of the mutant transgene under conditions where SRF expression was increased but expression of myocardin, a smooth muscle–selective SRF coactivator, was decreased. Finally, chromatin immunoprecipitation analyses, together with cell culture studies, suggested that myocardin selectively enhanced SRF binding to degenerate versus consensus CArG elements. Our results indicate that reductions in myocardin expression and the degeneracy of CArG elements within smooth muscle promoters play a key role in phenotypic switching of smooth muscle cells in vivo, as well as in mediating responses of CArG-dependent smooth muscle genes and growth regulatory genes under conditions in which these 2 classes of genes are differentially expressed.

Authors

Jennifer A. Hendrix, Brian R. Wamhoff, Oliver G. McDonald, Sanjay Sinha, Tadashi Yoshida, Gary K. Owens

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 680 26
PDF 67 21
Figure 278 3
Citation downloads 73 0
Totals 1,098 50
Total Views 1,148
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts