Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines
Shawn M. Sumida, … , Norman L. Letvin, Dan H. Barouch
Shawn M. Sumida, … , Norman L. Letvin, Dan H. Barouch
Published November 1, 2004
Citation Information: J Clin Invest. 2004;114(9):1334-1342. https://doi.org/10.1172/JCI22608.
View: Text | PDF
Article Vaccines

Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines

  • Text
  • PDF
Abstract

DCs are critical for priming adaptive immune responses to foreign antigens. However, the utility of harnessing these cells in vivo to optimize the immunogenicity of vaccines has not been fully explored. Here we investigate a novel vaccine approach that involves delivering synergistic signals that both recruit and expand DC populations at the site of antigen production. Intramuscular injection of an unadjuvanted HIV-1 envelope (env) DNA vaccine recruited few DCs to the injection site and elicited low-frequency, env-specific immune responses in mice. Coadministration of plasmids encoding the chemokine macrophage inflammatory protein-1α (MIP-1α) and the DC-specific growth factor fms-like tyrosine kinase 3 ligand with the DNA vaccine resulted in the recruitment, expansion, and activation of large numbers of DCs at the site of inoculation. Consistent with these findings, coadministration of these plasmid cytokines also markedly augmented DNA vaccine--–elicited cellular and humoral immune responses and increased protective efficacy against challenge with recombinant vaccinia virus. These data suggest that the availability of mature DCs at the site of inoculation is a critical rate-limiting factor for DNA vaccine immunogenicity. Synergistic recruitment and expansion of DCs in vivo may prove a practical strategy for overcoming this limitation and potentiating immune responses to vaccines as well as other immunotherapeutic strategies.

Authors

Shawn M. Sumida, Paul F. McKay, Diana M. Truitt, Michael G. Kishko, Janelle C. Arthur, Michael S. Seaman, Shawn S. Jackson, Darci A. Gorgone, Michelle A. Lifton, Norman L. Letvin, Dan H. Barouch

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Histopathology of injection sites. BALB/c mice (n = 4 per group) were im...
Histopathology of injection sites. BALB/c mice (n = 4 per group) were immunized intramuscularly with (A) saline; (B) gp120 DNA vaccine alone; or gp120 DNA vaccine with (C) plasmid Flt3L, (D) plasmid MIP-1α, or (E) both plasmid Flt3L and plasmid MIP-1α. We injected 50 μg of each plasmid with sufficient sham plasmid to keep the total DNA dose per mouse constant. Muscle sections (5 μm thick) were stained with H&E on day 7 following immunization. Magnification, ×20.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts