Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells
Jeremy S. Duffield, Kwon Moo Park, Li-Li Hsiao, Vicki R. Kelley, David T. Scadden, Takaharu Ichimura, Joseph V. Bonventre
Jeremy S. Duffield, Kwon Moo Park, Li-Li Hsiao, Vicki R. Kelley, David T. Scadden, Takaharu Ichimura, Joseph V. Bonventre
View: Text | PDF
Research Article

Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells

  • Text
  • PDF
Abstract

Ischemia causes kidney tubular cell damage and abnormal renal function. The kidney is capable of morphological restoration of tubules and recovery of function. Recently, it has been suggested that cells repopulating the ischemically injured tubule derive from bone marrow stem cells. We studied kidney repair in chimeric mice expressing GFP or bacterial β-gal or harboring the male Y chromosome exclusively in bone marrow-derived cells. In GFP chimeras, some interstitial cells but not tubular cells expressed GFP after ischemic injury. More than 99% of those GFP interstitial cells were leukocytes. In female mice with male bone marrow, occasional tubular cells (0.06%) appeared to be positive for the Y chromosome, but deconvolution microscopy revealed these to be artifactual. In β-gal chimeras, some tubular cells also appeared to express β-gal as assessed by X-gal staining, but following suppression of endogenous (mammalian) β-gal, no tubular cells could be found that stained with X-gal after ischemic injury. Whereas there was an absence of bone marrow–derived tubular cells, many tubular cells expressed proliferating cell nuclear antigen, which is reflective of a high proliferative rate of endogenous surviving tubular cells. Upon i.v. injection of bone marrow mesenchymal stromal cells, postischemic functional renal impairment was reduced, but there was no evidence of differentiation of these cells into tubular cells of the kidney. Thus, our data indicate that bone marrow–derived cells do not make a significant contribution to the restoration of epithelial integrity after an ischemic insult. It is likely that intrinsic tubular cell proliferation accounts for functionally significant replenishment of the tubular epithelium after ischemia.

Authors

Jeremy S. Duffield, Kwon Moo Park, Li-Li Hsiao, Vicki R. Kelley, David T. Scadden, Takaharu Ichimura, Joseph V. Bonventre

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
Bone marrow EGFP-expressing cells lack leukocyte markers and acquire cha...
Bone marrow EGFP-expressing cells lack leukocyte markers and acquire characteristics of peritubular endothelial cells 7 days following I/R injury. (A) Fluorescence images of 7-day postischemic kidney showing interstitial cells expressing GFP but lacking CD45 (red) (arrowhead). T, tubule. (B) Confocal images of 7-day postischemic kidney from EGFP chimeras labeled with anti-CD31 antibodies (red). Note EGFP-positive cells coexpressing CD31 (arrowheads) in the 2D image. Also note that the endothelial cell nucleus expresses EGFP but not CD31, which is not expressed in nuclei (arrows). (C) Confocal images from 7-day postischemic kidney from EGFP chimeras labeled with antibodies against vWF (red). Note EGFP-positive cell coexpressing vWF in cytoplasmic granules (arrowhead) in the 2D image. Also note that the endothelial cell nucleus expresses EGFP but not vWF, which is not expressed in nuclei (arrows). (D) Quantification of bone marrow–derived cells expressing markers of endothelial cells through determination of the number of peritubular cells coexpressing EGFP and endothelial markers in contralateral (control) and 7-day postischemic kidneys. Data are presented as percent of vWF-positive or CD31-positive cells that express EGFP. Scale bars: 50 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts