Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport
Chao-Ling Yang, … , Arohan R. Subramanya, David H. Ellison
Chao-Ling Yang, … , Arohan R. Subramanya, David H. Ellison
Published May 2, 2005
Citation Information: J Clin Invest. 2005;115(5):1379-1387. https://doi.org/10.1172/JCI22452.
View: Text | PDF
Article Cardiology

Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport

  • Text
  • PDF
Abstract

With-no-lysine (WNK) kinases are highly expressed along the mammalian distal nephron. Mutations in either WNK1 or WNK4 cause familial hyperkalemic hypertension (FHHt), suggesting that the protein products converge on a final common pathway. We showed previously that WNK4 downregulates thiazide-sensitive NaCl cotransporter (NCC) activity, an effect suppressed by WNK1. Here we investigated the mechanisms by which WNK1 and WNK4 interact to regulate ion transport. We report that WNK1 suppresses the WNK4 effect on NCC activity and associates with WNK4 in a protein complex involving the kinase domains. Although a kinase-dead WNK1 also associates with WNK4, it fails to suppress WNK4-mediated NCC inhibition; the WNK1 kinase domain alone, however, is not sufficient to block the WNK4 effect. The carboxyterminal 222 amino acids of WNK4 are sufficient to inhibit NCC, but this fragment is not blocked by WNK1. Instead, WNK1 inhibition requires an intact WNK4 kinase domain, the region that binds to WNK1. In summary, these data show that: (a) the WNK4 carboxyl terminus mediates NCC suppression, (b) the WNK1 kinase domain interacts with the WNK4 kinase domain, and (c) WNK1 inhibition of WNK4 is dependent on WNK1 catalytic activity and an intact WNK1 protein. These findings provide insight into the complex interrelationships between WNK1 and WNK4 and provide a molecular basis for FHHt.

Authors

Chao-Ling Yang, Xiaoman Zhu, Zhaohong Wang, Arohan R. Subramanya, David H. Ellison

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
Localization of a negative regulatory signal region of WNK4. (A) Oocytes...
Localization of a negative regulatory signal region of WNK4. (A) Oocytes were injected with RNA encoding WNK4 constructs and NCC. The WNK4 constructs are diagrammed below. WNK4 missing the carboxyterminal 47 amino acids did not inhibit uptake, in contrast to constructs that contained these amino acid residues (the homologous regions of WNK4 from mouse [m], human [h], and rat [r] are shown below, with the terminal domain of rat WNK1 for comparison). A WNK4 fragment containing a human disease-causing mutation (WNK4-[R1164C]-[445–1222]) inhibited uptake as effectively as the wild type. *P < 0.05 versus NCC alone. (B) Immunoprecipitation of carboxyterminal WNK4 fragments by NCC. Oocytes were injected with cRNA encoding a Flag-tagged carboxyterminal fragment of NCC and HA-tagged carboxyterminal WNK constructs. Both carboxyterminal WNK4 constructs were immunoprecipitated by anti-Flag (NCC) antibodies.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts