Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis
Nathalie G. Bérubé, … , Ruth S. Slack, David J. Picketts
Nathalie G. Bérubé, … , Ruth S. Slack, David J. Picketts
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):258-267. https://doi.org/10.1172/JCI22329.
View: Text | PDF
Article Neuroscience

The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis

  • Text
  • PDF
Abstract

Mutations in genes encoding chromatin-remodeling proteins, such as the ATRX gene, underlie a number of genetic disorders including several X-linked mental retardation syndromes; however, the role of these proteins in normal CNS development is unknown. Here, we used a conditional gene-targeting approach to inactivate Atrx, specifically in the forebrain of mice. Loss of ATRX protein caused widespread hypocellularity in the neocortex and hippocampus and a pronounced reduction in forebrain size. Neuronal “birthdating” confirmed that fewer neurons reached the superficial cortical layers, despite normal progenitor cell proliferation. The loss of cortical mass resulted from a 12-fold increase in neuronal apoptosis during early stages of corticogenesis in the mutant animals. Moreover, cortical progenitors isolated from Atrx-null mice undergo enhanced apoptosis upon differentiation. Taken together, our results indicate that ATRX is a critical mediator of cell survival during early neuronal differentiation. Thus, increased neuronal loss may contribute to the severe mental retardation observed in human patients.

Authors

Nathalie G. Bérubé, Marie Mangelsdorf, Magdalena Jagla, Jackie Vanderluit, David Garrick, Richard J. Gibbons, Douglas R. Higgs, Ruth S. Slack, David J. Picketts

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Cre-mediated conditional deletion of Atrx in the forebrain. (A and B) Cr...
Cre-mediated conditional deletion of Atrx in the forebrain. (A and B) Cre in situ detection in sagittal sections of control (A) and AtrxFoxg1Cre (B) E13.5 embryos demonstrates that Cre expression is restricted to the telencephalon and anterior retina. (C–F) Sections of the cortex at P0.5 immunostained with antibodies specific for ATRX (C and D) and Cre recombinase (E and F). ATRX protein is undetectable in AtrxFoxg1Cre male cortex, and loss of expression is correlated with the presence of Cre recombinase. (G and H) Merged image of ATRX expression (red) and Cre expression (green) demonstrating the loss of ATRX protein in the cortex but not in neighboring brain tissues and the presence of rare ATRX-positive cells in the cortex (arrow, H). (H) Higher magnification of the image in G. (I) Reduced size of P0.5 AtrxFoxg1Cre pup and lack of milk in stomach (indicated by arrows). (J) Graph depicting decreased weight of P0.5 AtrxFoxg1Cre males compared with that of wild-type and heterozygous Cre+ female mice (P < 0.001). (K) Reduced size of AtrxFoxg1Cre forebrain compared with that of a littermate control, with greater reduction in caudal-medial area. Magnification, ×10 (C–G) and ×40 (H).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts