Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction
Young-sup Yoon, … , Takayuki Asahara, Douglas W. Losordo
Young-sup Yoon, … , Takayuki Asahara, Douglas W. Losordo
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):326-338. https://doi.org/10.1172/JCI22326.
View: Text | PDF
Article Cardiology

Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction

  • Text
  • PDF
Abstract

We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis.

Authors

Young-sup Yoon, Andrea Wecker, Lindsay Heyd, Jong-Seon Park, Tengiz Tkebuchava, Kengo Kusano, Allison Hanley, Heather Scadova, Gangjian Qin, Dong-Hyun Cha, Kirby L. Johnson, Ryuichi Aikawa, Takayuki Asahara, Douglas W. Losordo

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
In vitro differentiation and fusion of hBMSCs to CMCs, ECs, and SMCs. (A...
In vitro differentiation and fusion of hBMSCs to CMCs, ECs, and SMCs. (A–L) Coculture of hBMSCs with NRCMs. On day 3, DiI-labeled hBMSCs were added to the cultured NRCMs at a 1:4 ratio. IF images show cocultured DiI-labeled hBMSCs (B, F, and J) as red and NRCMs stained with CMC-specific proteins cTnI (C), ANP (G), and α-MHC (K) as green. Double-fluorescent cells in the merged images (D, H, and L) indicate that a subpopulation of hBMSCs exhibit CMC phenotypic markers (arrows). Arrowheads in B, D, J, and L indicate nontransdifferentiated hBMSCs. DAPI nuclear counterstaining (A, E, and I) shows no overlap of nuclei. mRNA expression of cardiac transcription factors was evaluated by RT-PCR (M). Before coculture, GATA-4 and Nkx2.5 were not expressed in hBMSC (lane 1) and NRCM (lane 2) cultures. Coculture (lane 3) induced de novo expression of GATA-4 and Nkx2.5. (N–Q) Coculture of prelabeled NRCMs and hBMSCs for investigation of cell fusion. NRCMs were labeled with the green fluorescence dye CFDA-SE (N) and DiI-labeled hBMSCs (O). Seven days after coculture, cells were stained for cTnI expression (blue fluorescence) (P). In the IF images (N–Q), triple-fluorescent cells (arrows) are fusion cells expressing cTnI protein. An hBMSC that has differentiated into CMC lineage is illustrated by red and blue fluorescence without green fluorescence (arrowheads). (R–Y) To determine the contribution of fusion and differentiation to phenotypic changes of hBMSCs into ECs (R–U) or SMCs (V–Y), CFDA-SE–labeled RAECs or RVSMCs were cocultured with DiI-labeled hBMSCs. Cells were stained with VE-cadherin or α-SMA (blue fluorescence). Arrows in R–U indicate fused RAECs (green) and hBMSCs (red) that express VE-cadherin. Arrowheads in R–U illustrate ECs differentiated from hBMSCs. Arrows in V–Y indicate fused RVSMCs (green) and hBMSCs (red) that express α-SMA. Scale bar in A–L: 50 μm; scale bar in N–Y: 100 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts