Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction
Young-sup Yoon, … , Takayuki Asahara, Douglas W. Losordo
Young-sup Yoon, … , Takayuki Asahara, Douglas W. Losordo
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):326-338. https://doi.org/10.1172/JCI22326.
View: Text | PDF
Article Cardiology

Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction

  • Text
  • PDF
Abstract

We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis.

Authors

Young-sup Yoon, Andrea Wecker, Lindsay Heyd, Jong-Seon Park, Tengiz Tkebuchava, Kengo Kusano, Allison Hanley, Heather Scadova, Gangjian Qin, Dong-Hyun Cha, Kirby L. Johnson, Ryuichi Aikawa, Takayuki Asahara, Douglas W. Losordo

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
In vitro differentiation of hBMSCs into EC and SMC lineages. (A) Hoffman...
In vitro differentiation of hBMSCs into EC and SMC lineages. (A) Hoffman phase-contrast image (upper left panel) 5 days after culture with DMEM in gelatin-coated glass chambers shows that hBMSCs have formed typical vascular tubelike structures. Immunofluorescent imaging demonstrates that hBMSCs express EC-specific proteins such as vWFa, KDR, VE-cadherin, CD31, and ULEX after culturing in EC differentiation media for 14 days. (B) RT-PCR analysis using EC-specific primers VE-cadherin, CD34, KDR, Tie2, and CD31 also confirms the differentiation of hBMSCs into EC phenotypes. Lane 1, size marker; lane 2, before differentiation; lane 3, induced differentiation; lane 4, positive control. (C) hBMSCs cultured in 2% DMEM containing PDGF-BB for 14 days demonstrate the expression of SMC-specific proteins α-SMA and calponin by immunofluorescent staining. (D) RT-PCR analysis shows that SMC-specific genes PDGFR-β, α-SMA, SM22α, and SM1 are only expressed after induction of differentiation. Lane 1, size marker; lane 2, before differentiation; lane 3, induced differentiation; lane 4, positive control. The heavy band in the lanes of the size markers in B and D represents 600 bp. Scale bar: 100 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts