Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
β cell replication is the primary mechanism for maintaining postnatal β cell mass
Senta Georgia, Anil Bhushan
Senta Georgia, Anil Bhushan
Published October 1, 2004
Citation Information: J Clin Invest. 2004;114(7):963-968. https://doi.org/10.1172/JCI22098.
View: Text | PDF
Article Metabolism

β cell replication is the primary mechanism for maintaining postnatal β cell mass

  • Text
  • PDF
Abstract

The endocrine pancreas undergoes major remodeling during neonatal development when replication of differentiated β cells is the major mechanism by which β cell mass is regulated. The molecular mechanisms that govern the replication of terminally differentiated β cells are unclear. We show that during neonatal development, cyclin D2 expression in the endocrine pancreas coincides with the replication of endocrine cells and a massive increase in islet mass. Using cyclin D2–/– mice, we demonstrate that cyclin D2 is required for the replication of endocrine cells but is expendable for exocrine and ductal cell replication. As a result, 14-day-old cyclin D2–/– mice display dramatically smaller islets and a 4-fold reduction in β cell mass in comparison to their WT littermates. Consistent with these morphological findings, the cyclin D2–/– mice are glucose intolerant. These results suggest that cyclin D2 plays a key role in regulating the transition of β cells from quiescence to replication and may provide a target for the development of therapeutic strategies to induce expansion and/or regeneration of β cells.

Authors

Senta Georgia, Anil Bhushan

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Incorporation of BrdU during postnatal pancreatic development of WT and ...
Incorporation of BrdU during postnatal pancreatic development of WT and cyclin D2–/– mice. BrdU was injected in 4- and 7-day-old mice 2 hours before being sacrificed. (A and B) Sections from pancreata costained with anti_insulin and anti_BrdU Ab’s. (A) In P4 WT mice, a fraction of β cells that incorporate BrdU are evident during the first week of postnatal development. Quantification of 20 representative islets showed that 9.2% of β cells incorporated BrdU in P4 WT mice. Arrow indicates an example of an islet with BrdU-positive β cells. (B) In cyclin D2–/– littermates, β cells that incorporated BrdU are not observed. Arrows indicate islets in cyclin D2–/– that do not contain BrdU-positive β cells. (C and D) Sections from pancreas costained with anti_glucagon and anti_BrdU Ab’s. (C) Glucagon-positive cells incorporate BrdU in the WT pancreas. Arrow indicates an example of an islet with a BrdU-positive α cell. (D) No glucagon-positive cells that incorporate BrdU are observed. (E and F) Sections from pancreas costained with anti_amylase and anti_BrdU Ab’s. BrdU incorporation is similar in exocrine and ductal tissue of the pancreata from WT (E) and cyclin D2–/– mice (F).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts