Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans
Supriya Srinivasan, Cecile Lubrano-Berthelier, Cedric Govaerts, Franck Picard, Pamela Santiago, Bruce R. Conklin, Christian Vaisse
Supriya Srinivasan, Cecile Lubrano-Berthelier, Cedric Govaerts, Franck Picard, Pamela Santiago, Bruce R. Conklin, Christian Vaisse
View: Text | PDF
Article Metabolism

Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans

  • Text
  • PDF
Abstract

The melanocortin-4 receptor (MC4R), a centrally expressed G protein–coupled receptor (GPCR), is essential for the maintenance of long-term energy balance in humans. Mutations in MC4R are the most common genetic cause of obesity. Since activation of this receptor leads to a decrease in food intake, MC4R is also a major therapeutic target for the treatment of obesity. Control of MC4R activity in vivo is modulated by the opposing effects of the anorexigenic agonist α–melanocyte-stimulating hormone (α-MSH) and the orexigenic antagonist agouti-related protein (AGRP). In addition, experiments in vitro have demonstrated that the human MC4R has an intrinsic constitutive activity on which AGRP also acts as an inverse agonist. The physiological role of this constitutive activity in the control of energy balance as well as the domain of the protein implicated in its maintenance are unknown. By systematically studying functional defects in naturally occurring MC4R mutations from obese patients, we defined a cluster of N-terminal mutations that selectively impair the constitutive activity of the receptor. Further characterization of this domain demonstrated that it functions as a tethered intramolecular ligand that maintains the constitutive activity of MC4R and may provide novel avenues for the design of drugs targeting this receptor. Our results also suggest that the tonic satiety signal provided by the constitutive activity of MC4R may be required for maintaining long-term energy homeostasis in humans.

Authors

Supriya Srinivasan, Cecile Lubrano-Berthelier, Cedric Govaerts, Franck Picard, Pamela Santiago, Bruce R. Conklin, Christian Vaisse

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
The N-terminal domain uses a subset of the acidic residues used by α-MSH...
The N-terminal domain uses a subset of the acidic residues used by α-MSH. (A) The cAMP accumulation was measured in cells transiently transfected with WT and mutated receptors after stimulation with 10 μM α-MSH. (B) The ratio of receptor activation (as measured by cAMP accumulation) to cell-surface expression (as measured by ELISA) was measured in the WT and the mutated receptors.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts