Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans
Supriya Srinivasan, … , Bruce R. Conklin, Christian Vaisse
Supriya Srinivasan, … , Bruce R. Conklin, Christian Vaisse
Published October 15, 2004
Citation Information: J Clin Invest. 2004;114(8):1158-1164. https://doi.org/10.1172/JCI21927.
View: Text | PDF
Article Metabolism

Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans

  • Text
  • PDF
Abstract

The melanocortin-4 receptor (MC4R), a centrally expressed G protein–coupled receptor (GPCR), is essential for the maintenance of long-term energy balance in humans. Mutations in MC4R are the most common genetic cause of obesity. Since activation of this receptor leads to a decrease in food intake, MC4R is also a major therapeutic target for the treatment of obesity. Control of MC4R activity in vivo is modulated by the opposing effects of the anorexigenic agonist α–melanocyte-stimulating hormone (α-MSH) and the orexigenic antagonist agouti-related protein (AGRP). In addition, experiments in vitro have demonstrated that the human MC4R has an intrinsic constitutive activity on which AGRP also acts as an inverse agonist. The physiological role of this constitutive activity in the control of energy balance as well as the domain of the protein implicated in its maintenance are unknown. By systematically studying functional defects in naturally occurring MC4R mutations from obese patients, we defined a cluster of N-terminal mutations that selectively impair the constitutive activity of the receptor. Further characterization of this domain demonstrated that it functions as a tethered intramolecular ligand that maintains the constitutive activity of MC4R and may provide novel avenues for the design of drugs targeting this receptor. Our results also suggest that the tonic satiety signal provided by the constitutive activity of MC4R may be required for maintaining long-term energy homeostasis in humans.

Authors

Supriya Srinivasan, Cecile Lubrano-Berthelier, Cedric Govaerts, Franck Picard, Pamela Santiago, Bruce R. Conklin, Christian Vaisse

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Mutations in the N-terminal domain of MC4R result in reduced constitutiv...
Mutations in the N-terminal domain of MC4R result in reduced constitutive activity. (A) Basal activities of WT and mutated MC4R were assayed by analyzing their ability to activate the expression of a cAMP-induced luciferase reporter gene under basal unstimulated conditions or in response to AGRP. The data are normalized to maximal stimulation obtained in presence of 8Br-cAMP (1 μM) and to Renilla luciferase activity for assessment of transfection efficiency. (B) Ratios of cAMP accumulation (measured by CatchPoint assays) to membrane expression (measured by ELISA) were determined on the same batch of transiently transfected cells for WT and mutant receptors. Data are expressed as percentage of WT activity as the means of quadruplicate determinations (± SEM) and are the averages of 3 independent experiments. Inset: There were no differences in membrane expression between the WT and mutant receptors. The ratio of basal activity to membrane expression was significantly reduced for all N-terminal domain mutants (P < 0.05). (C) The ratio of basal activity to cell-surface expression was measured in the WT and R18C receptors under acute (2-hour incubation) and chronic (overnight incubation) basal conditions. (D–F) Basal activity relative to cell-surface expression of WT and R18C in transiently transfected HEK293 cells. Increasing cell-surface expression was obtained by transfecting 0.1, 0.2, and 0.5 μg DNA in 6-well tissue culture dishes. WT MC4R-transfected cells showed a linear increase in basal activity with increasing membrane expression (slope = 2.2; r2 = 0.98). In contrast, R18C, R7H, and T11S show a lower increase in basal activity despite an increase in cell-surface expression similar to the WT receptor.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts