Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance
Zhiya Yu, … , Brian M. Baker, Nicholas P. Restifo
Zhiya Yu, … , Brian M. Baker, Nicholas P. Restifo
Published August 16, 2004
Citation Information: J Clin Invest. 2004;114(4):551-559. https://doi.org/10.1172/JCI21695.
View: Text | PDF
Article Immunology

Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance

  • Text
  • PDF
Abstract

Understanding the mechanisms underlying the poor immunogenicity of human self/tumor antigens is challenging because of experimental limitations in humans. Here, we developed a human-mouse chimeric model that allows us to investigate the roles of the frequency and self-reactivity of antigen-specific T cells in determination of the immunogenicity of an epitope (amino acids 209–217) derived from a human melanoma antigen, gp100. In these transgenic mice, CD8+ T cells express the variable regions of a human T cell receptor (hTCR) specific for an HLA-A*0201–restricted gp100209–217. Immunization of hTCR-transgenic mice with gp100209–217 peptide elicited minimal T cell responses, even in mice in which the epitope was knocked out. Conversely, a modified epitope, gp100209–217(2M), was significantly more immunogenic. Both biological and physical assays revealed a fast rate of dissociation of the native peptide from the HLA-A*0201 molecule and a considerably slower rate of dissociation of the modified peptide. In vivo, the time allowed for dissociation of peptide-MHC complexes on APCs prior to their exposure to T cells significantly affected the induction of immune responses. These findings indicate that the poor immunogenicity of some self/tumor antigens is due to the instability of the peptide-MHC complex rather than to the continual deletion or tolerization of self-reactive T cells.

Authors

Zhiya Yu, Marc R. Theoret, Christopher E. Touloukian, Deborah R. Surman, Scott C. Garman, Lionel Feigenbaum, Tiffany K. Baxter, Brian M. Baker, Nicholas P. Restifo

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Characterization of the human-mouse TCR–HLA-A2/Kb transgenic mouse model...
Characterization of the human-mouse TCR–HLA-A2/Kb transgenic mouse model. (A) Illustration of a hTCR–HLA-A*0201–gp100209–217 complex in the JR209-Tg mouse model. (B) hTCR Vβ8 and CD8 expression on lymphocyte-gated population from spleens of non–TCR-transgenic A2/Kb (A2/Kb) and JR209-Tg littermate mice. The percentage of hVβ8+CD8+ lymphocytes was approximately 0 in A2/Kb mice and 41 in JR209-Tg littermates. (C) Binding of HLA-A*0201–gp100209–217 tetramer to the lymphocyte-gated population from spleens of A2/Kb (area under thick black line) and JR209-Tg (gray area) mice. M1 (tetramer positive gate) represented 42% of the gated population. (D) HLA-A*0201 expression on lymphocyte-gated population from splenocytes of C57BL/6 (gray area), A2/Kb (area under gray line), and JR209-Tg (area under thick black line) mice.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts