Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A role for proteinase-activated receptor–1 in inflammatory bowel diseases
Nathalie Vergnolle, … , Giuseppe Cirino, Stefano Fiorucci
Nathalie Vergnolle, … , Giuseppe Cirino, Stefano Fiorucci
Published November 15, 2004
Citation Information: J Clin Invest. 2004;114(10):1444-1456. https://doi.org/10.1172/JCI21689.
View: Text | PDF | Retraction
Article Immunology

A role for proteinase-activated receptor–1 in inflammatory bowel diseases

  • Text
  • PDF
Abstract

Proteinase-activated receptor–1 (PAR1), a G protein–coupled receptor activated by thrombin, is highly expressed in different cell types of the gastrointestinal tract. The activity of thrombin and of other proteinases is significantly increased in the colon of inflammatory bowel disease (IBD) patients. Since PAR1 activation in tissues other than the gut provoked inflammation, we hypothesized that PAR1 activation in the colon is involved in the pathogenesis of IBD. Here, we demonstrate that PAR1 is overexpressed in the colon of IBD patients. In mice, intracolonic administration of PAR1 agonists led to an inflammatory reaction characterized by edema and granulocyte infiltration. This PAR1 activation–induced inflammation was dependent on B and T lymphocytes. Moreover, PAR1 activation exacerbated and prolonged inflammation in a mouse model of IBD induced by the intracolonic administration of trinitrobenzene sulfonic acid (TNBS), while PAR1 antagonism significantly decreased the mortality and severity of colonic inflammation induced by TNBS and dextran sodium sulfate. In these 2 models, colitis development was strongly attenuated by PAR1 deficiency. Taken together, these results imply an important role for PAR1 in the pathogenesis of experimental colitis, supporting the notion that PAR1 inhibition may be beneficial in the context of IBD and possibly in other chronic intestinal inflammatory disorders.

Authors

Nathalie Vergnolle, Laurie Cellars, Andrea Mencarelli, Giovanni Rizzo, Sunita Swaminathan, Paul Beck, Martin Steinhoff, Patricia Andrade-Gordon, Nigel W. Bunnett, Morley D. Hollenberg, John L. Wallace, Giuseppe Cirino, Stefano Fiorucci

×

Figure 11

Options: View larger image (or click on image) Download as PowerPoint
Effect of intracolonic TNBS administration (A–D) or DSS treatment (E and...
Effect of intracolonic TNBS administration (A–D) or DSS treatment (E and F) on survival rate (A), weight (B), macroscopic-damage score (C and E), and MPO activity (D and F) in PAR1-deficient mice (PAR1–/–) and WT littermates (PAR1+/+). Values are mean ± SEM; minimum of n = 10 per group. *Significantly different from PAR1–/– in B, and significantly different from WT in C–F, P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts