Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Decreased susceptibility to renovascular hypertension in mice lacking the prostaglandin I2 receptor IP
Takayuki Fujino, … , Shuh Narumiya, Fumitaka Ushikubi
Takayuki Fujino, … , Shuh Narumiya, Fumitaka Ushikubi
Published September 15, 2004
Citation Information: J Clin Invest. 2004;114(6):805-812. https://doi.org/10.1172/JCI21382.
View: Text | PDF
Article Cardiology

Decreased susceptibility to renovascular hypertension in mice lacking the prostaglandin I2 receptor IP

  • Text
  • PDF
Abstract

Persistent reduction of renal perfusion pressure induces renovascular hypertension by activating the renin-angiotensin-aldosterone system; however, the sensing mechanism remains elusive. Here we investigated the role of PGI2 in renovascular hypertension in vivo, employing mice lacking the PGI2 receptor (IP–/– mice). In WT mice with a two-kidney, one-clip model of renovascular hypertension, the BP was significantly elevated. The increase in BP in IP–/– mice, however, was significantly lower than that in WT mice. Similarly, the increases in plasma renin activity, renal renin mRNA, and plasma aldosterone in response to renal artery stenosis were all significantly lower in IP–/– mice than in WT mice. All these parameters were measured in mice lacking the four PGE2 receptor subtypes individually, and we found that these mice had similar responses to WT mice. PGI2 is produced by COX-2 and a selective inhibitor of this enzyme, SC-58125, also significantly reduced the increases in plasma renin activity and renin mRNA expression in WT mice with renal artery stenosis, but these effects were absent in IP–/– mice. When the renin-angiotensin-aldosterone system was activated by salt depletion, SC-58125 blunted the response in WT mice but not in IP–/– mice. These results indicate that PGI2 derived from COX-2 plays a critical role in regulating the release of renin and consequently renovascular hypertension in vivo.

Authors

Takayuki Fujino, Naoki Nakagawa, Koh-ichi Yuhki, Akiyoshi Hara, Takehiro Yamada, Koji Takayama, Shuhko Kuriyama, Yayoi Hosoki, Osamu Takahata, Takanobu Taniguchi, Jun Fukuzawa, Naoyuki Hasebe, Kenjiro Kikuchi, Shuh Narumiya, Fumitaka Ushikubi

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
Effects of cicaprost on renin activity and cAMP contents in cultured cel...
Effects of cicaprost on renin activity and cAMP contents in cultured cells rich in JG cells. Cicaprost (1 μM) significantly increased the renin activity (A) and cAMP contents (B) in the cells prepared from WT mice, while the effects disappeared completely in the cells prepared from IP–/– mice. Each point represents mean ± SEM of 4 cell groups. *P < 0.05 versus control.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts