Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
Mitsuhiro Watanabe, … , David D. Moore, Johan Auwerx
Mitsuhiro Watanabe, … , David D. Moore, Johan Auwerx
Published May 15, 2004
Citation Information: J Clin Invest. 2004;113(10):1408-1418. https://doi.org/10.1172/JCI21025.
View: Text | PDF
Article Metabolism

Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c

  • Text
  • PDF
Abstract

We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglyceridemia. At the molecular level, CA decreases hepatic expression of SREBP-1c and its lipogenic target genes. Through the use of mouse mutants for the short heterodimer partner (SHP) and liver X receptor (LXR) α and β, we demonstrate the critical dependence of the reduction of SREBP-1c expression by either natural or synthetic farnesoid X receptor (FXR) agonists on both SHP and LXRα and LXRβ. These results suggest that strategies aimed at increasing FXR activity and the repressive effects of SHP should be explored to correct hypertriglyceridemia.

Authors

Mitsuhiro Watanabe, Sander M. Houten, Li Wang, Antonio Moschetta, David J. Mangelsdorf, Richard A. Heyman, David D. Moore, Johan Auwerx

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Bile acids and SHP decrease expression from the SREBP-1c promoter. (A) E...
Bile acids and SHP decrease expression from the SREBP-1c promoter. (A) Expression of SREBP-1c and several of its target genes in mouse liver primary hepatocyte cultures. The presence of ligands for LXR (22(R)-hydroxycholesterol, 20 µM) and RXR (LG100268, 1 µM) is indicated by a + sign. FXR was activated by the addition of CDCA to the medium (50 µM and 200 µM). (B) Activity of the mouse SREBP-1c promoter in the McA-RH7777 cell line after the addition of 200 µM CDCA or 200 µM CA to the medium. Cells were tested in the absence or presence of cotransfected LXRα and ligands for RXR and LXR at the concentrations specified in A. (C) Schematic representation of the different constructs of the mouse SREBP-1c promoter used in transfection assays. Binding sites for LXR are displayed as ovals. The nucleotide numbering is relative to the SREBP-1c start codon. (D) Sequence comparison of the LXRREs in the human and mouse SREBP-1c promoters. The GenBank accession numbers for the human SREBP-1c promoter sequence are NT_010718 or AC122129. (E) Activity of the mSREBP-1c reporters in McA-RH7777 cells transfected either with an empty expression vector or with the indicated combinations of expression vectors for mouse LRH-1, mouse RXRα, human LXRα, mouse SHP in the presence (black bars) or absence (white bars) of LXR (22(R)-hydroxycholesterol; 20 µM) and RXR agonists (LG100268; 1 µM).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts