Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model
Rolf Postina, … , Fred van Leuven, Falk Fahrenholz
Rolf Postina, … , Fred van Leuven, Falk Fahrenholz
Published May 15, 2004
Citation Information: J Clin Invest. 2004;113(10):1456-1464. https://doi.org/10.1172/JCI20864.
View: Text | PDF | Erratum
Article Neuroscience

A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model

  • Text
  • PDF
Abstract

Alzheimer disease (AD) is characterized by excessive deposition of amyloid β-peptides (Aβ peptides) in the brain. In the nonamyloidogenic pathway, the amyloid precursor protein (APP) is cleaved by the α-secretase within the Aβ peptide sequence. Proteinases of the ADAM family (adisintegrin and metalloproteinase) are the main candidates as physiologically relevant α-secretases, but early lethality of knockout animals prevented a detailed analysis in neuronal cells. To overcome this restriction, we have generated transgenic mice that overexpress either ADAM10 or a catalytically inactive ADAM10 mutant. In this report we show that a moderate neuronal overexpression of ADAM10 in mice transgenic for human APP[V717I] increased the secretion of the neurotrophic soluble α-secretase–released N-terminal APP domain (APPsα), reduced the formation of Aβ peptides, and prevented their deposition in plaques. Functionally, impaired long-term potentiation and cognitive deficits were alleviated. Expression of mutant catalytically inactive ADAM10 led to an enhancement of the number and size of amyloid plaques in the brains of double-transgenic mice. The results provide the first in vivo evidence for a proteinase of the ADAM family as an α-secretase of APP, reveal activation of ADAM10 as a promising therapeutic target, and support the hypothesis that a decrease in α-secretase activity contributes to the development of AD.

Authors

Rolf Postina, Anja Schroeder, Ilse Dewachter, Juergen Bohl, Ulrich Schmitt, Elzbieta Kojro, Claudia Prinzen, Kristina Endres, Christoph Hiemke, Manfred Blessing, Pascaline Flamez, Antoine Dequenne, Emile Godaux, Fred van Leuven, Falk Fahrenholz

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Detection and quantitation of human APP processing products in double-tr...
Detection and quantitation of human APP processing products in double-transgenic ADAM10-mo ∞ APP[V717I], ADAM10-hi ∞ APP[V717I], ADAM10-hz ∞ APP[V717I], and ADAM10-dn ∞ APP[V717I] mice as well as in monotransgenic APP[V717I] (APP) animals. All analyzed mice were 18 weeks old. (A) APP processing products detected by Western blot analysis as described in Methods. First row, secreted APPsα; second row, secreted APPsβ; third row, membrane-bound APP C-terminal fragments (CTFα, CTFβ); last row, membrane-bound full-length APP (APP fl). (B) Quantitative analysis of the APP-processing products APPsα, APPsβ, and APP CTFα from different mouse lines. In all experiments, quantified APP processing products were normalized to APP fl expression. Values are expressed as percentages of values from APP control mice (set to 100%) and are the mean ± SD (n = 7_8 animals of each line). Significance was determined by the unpaired Student’s t test. *P < 0.05; #P < 0.01; P < 0.001. (C) Quantitation of soluble human Aβ40 and Aβ42 peptides isolated from mouse brains by sandwich ELISA. APP[V717I] mice (n = 6) were used as control to ADAM10-hz ∞ APP[V717I] (n = 7) and ADAM10-dn ∞ APP[V717I] (n = 6) animals. Values are the mean ± SEM of the amount of each Aβ peptide per gram of mouse brain. Significance was determined by the unpaired Student’s t test. *P < 0.05.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts