Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Haldane, hot dogs, halitosis, and hypoxic vasodilation: the emerging biology of the nitrite anion
Mark T. Gladwin
Mark T. Gladwin
Published January 1, 2004
Citation Information: J Clin Invest. 2004;113(1):19-21. https://doi.org/10.1172/JCI20664.
View: Text | PDF
Commentary

Haldane, hot dogs, halitosis, and hypoxic vasodilation: the emerging biology of the nitrite anion

  • Text
  • PDF
Abstract

While it has long been known that the reduction of nitrite to nitric oxide (NO) forms iron-nitrosyl-myoglobin and is the basis of meat curing, a greater biological activity of the nitrite anion has only recently been appreciated. In the stomach, NO is formed from acidic reduction of nitrite and increases mucous barrier thickness and gastric blood flow (see the related study beginning on page 106). Nitrite levels in blood reflect NO production from endothelial NO synthase enzymes, and recent data suggest that nitrite contributes to blood flow regulation by reaction with deoxygenated hemoglobin and tissue heme proteins to form NO.

Authors

Mark T. Gladwin

×

Full Text PDF | Download (386.24 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts