Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Isoform-specific regulation of mood behavior and pancreatic β cell and cardiovascular function by L-type Ca2+ channels
Martina J. Sinnegger-Brauns, … , Nicolas Singewald, Jörg Striessnig
Martina J. Sinnegger-Brauns, … , Nicolas Singewald, Jörg Striessnig
Published May 15, 2004
Citation Information: J Clin Invest. 2004;113(10):1430-1439. https://doi.org/10.1172/JCI20208.
View: Text | PDF
Article

Isoform-specific regulation of mood behavior and pancreatic β cell and cardiovascular function by L-type Ca2+ channels

  • Text
  • PDF
Abstract

Cav1.2 and Cav1.3 L-type Ca2+ channels (LTCCs) are believed to underlie Ca2+ currents in brain, pancreatic β cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause card iovascular (activators and blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Cav1.2 α1 subunits (Cav1.2DHP–/–) without affecting function and expression. This allowed separation of the DHP effects of Cav1.2 from those of Cav1.3 and other LTCCs. DHP effects on pancreatic β cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Cav1.2DHP–/– mice, which rules out a direct role of Cav1.3 for these physiological processes. Using Cav1.2DHP–/– mice, we established DHPs as mood-modifying agents: LTCC activator–induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Cav1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.

Authors

Martina J. Sinnegger-Brauns, Alfred Hetzenauer, Irene G. Huber, Erik Renström, Georg Wietzorrek, Stanislav Berjukov, Maurizio Cavalli, Doris Walter, Alexandra Koschak, Ralph Waldschütz, Steffen Hering, Sergio Bova, Patrik Rorsman, Olaf Pongs, Nicolas Singewald, Jörg Striessnig

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
BayK-induced Fos expression in WT and Cav1.2DHP–/– mice. Mice were injec...
BayK-induced Fos expression in WT and Cav1.2DHP–/– mice. Mice were injected with vehicle or BayK solution (WT, 2 mg/kg; mutants, 4 mg/kg) and Fos expression was quantified by immunohistochemistry as described in Methods. (A) DS, dorsal striatum; Ci, cingulate cortex; LV, lateral ventricle. Magnification, ∞40. Inset shows higher magnification of boxed areas. (B) Fos expression after BayK (right) or vehicle (left) application in the nucleus accumbens. aca, anterior commissure, anterior. Magnification, ∞100. Inset magnification, ∞800. (C) Fos expression after BayK (right) or vehicle (left) application in the BNST. Magnification, ∞100. Inset magnification, ∞800 (boxed area in the lateral division). acp, anterior commissure, posterior. (D) Stimulation of IBa through Cav1.2 (Cav1.2WT), mutant Cav1.2 (Cav1.2MUT), and Cav1.3 by BayK after heterologous expression under identical conditions in tsA-201 cells as described (15). Based on DHP pharmacokinetic data in mice (53), we calculated BayK concentration in brain to reach concentrations between ∼7 ∝M (peak concentration) and ∼1 ∝M (after three elimination half-lives). All data were significantly different from 1 (control before drug application) (P < 0.05; one-sample Student's t test) except Cav1.2MUT, 1 ∝M and 5 ∝M BayK).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts