Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression
Masaki Ieda, Keiichi Fukuda, Yasuyo Hisaka, Kensuke Kimura, Haruko Kawaguchi, Jun Fujita, Kouji Shimoda, Eiko Takeshita, Hideyuki Okano, Yukiko Kurihara, Hiroki Kurihara, Junji Ishida, Akiyoshi Fukamizu, Howard J. Federoff, Satoshi Ogawa
Masaki Ieda, Keiichi Fukuda, Yasuyo Hisaka, Kensuke Kimura, Haruko Kawaguchi, Jun Fujita, Kouji Shimoda, Eiko Takeshita, Hideyuki Okano, Yukiko Kurihara, Hiroki Kurihara, Junji Ishida, Akiyoshi Fukamizu, Howard J. Federoff, Satoshi Ogawa
View: Text | PDF
Article Cardiology

Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression

  • Text
  • PDF
Abstract

The cardiac sympathetic nerve plays an important role in regulating cardiac function, and nerve growth factor (NGF) contributes to its development and maintenance. However, little is known about the molecular mechanisms that regulate NGF expression and sympathetic innervation of the heart. In an effort to identify regulators of NGF in cardiomyocytes, we found that endothelin-1 specifically upregulated NGF expression in primary cultured cardiomyocytes. Endothelin-1–induced NGF augmentation was mediated by the endothelin-A receptor, Giβγ, PKC, the Src family, EGFR, extracellular signal–regulated kinase, p38MAPK, activator protein-1, and the CCAAT/enhancer-binding protein δ element. Either conditioned medium or coculture with endothelin-1–stimulated cardiomyocytes caused NGF-mediated PC12 cell differentiation. NGF expression, cardiac sympathetic innervation, and norepinephrine concentration were specifically reduced in endothelin-1–deficient mouse hearts, but not in angiotensinogen-deficient mice. In endothelin-1–deficient mice the sympathetic stellate ganglia exhibited excess apoptosis and displayed loss of neurons at the late embryonic stage. Furthermore, cardiac-specific overexpression of NGF in endothelin-1–deficient mice overcame the reduced sympathetic innervation and loss of stellate ganglia neurons. These findings indicate that endothelin-1 regulates NGF expression in cardiomyocytes and plays a critical role in sympathetic innervation of the heart.

Authors

Masaki Ieda, Keiichi Fukuda, Yasuyo Hisaka, Kensuke Kimura, Haruko Kawaguchi, Jun Fujita, Kouji Shimoda, Eiko Takeshita, Hideyuki Okano, Yukiko Kurihara, Hiroki Kurihara, Junji Ishida, Akiyoshi Fukamizu, Howard J. Federoff, Satoshi Ogawa

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 892 62
PDF 128 23
Figure 348 3
Citation downloads 106 0
Totals 1,474 88
Total Views 1,562
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts