Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Critical roles of TRAIL in hepatic cell death and hepatic inflammation
Shi-Jun Zheng, … , Galit Tsabary, Youhai H. Chen
Shi-Jun Zheng, … , Galit Tsabary, Youhai H. Chen
Published January 1, 2004
Citation Information: J Clin Invest. 2004;113(1):58-64. https://doi.org/10.1172/JCI19255.
View: Text | PDF
Article Immunology

Critical roles of TRAIL in hepatic cell death and hepatic inflammation

  • Text
  • PDF
Abstract

The TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis of tumor cells but not most normal cells. Its role in hepatic cell death and hepatic diseases is not clear. In vitro studies suggest that murine hepatocytes are not sensitive to TRAIL-induced apoptosis, indicating that TRAIL may not mediate hepatic cell death. Using two experimental models of hepatitis, we found that hepatic cell death in vivo was dramatically reduced in TRAIL-deficient mice and mice treated with a blocking TRAIL receptor. Although both TRAIL and its death receptor 5 were constitutively expressed in the liver, TRAIL expression by immune cells alone was sufficient to restore the sensitivity of TRAIL-deficient mice to hepatitis. Thus, TRAIL plays a crucial role in hepatic cell death and hepatic inflammation.

Authors

Shi-Jun Zheng, Pu Wang, Galit Tsabary, Youhai H. Chen

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Serum transaminase and liver fibrosis in Con-A–induced hepatitis. (a–d) ...
Serum transaminase and liver fibrosis in Con-A–induced hepatitis. (a–d) Normal (TRAIL+/+) and TRAIL-deficient (TRAIL–/–) BALB/c mice, five per group, were injected once with Con-A (0–25 mg/kg of body weight) as described in Methods. Serum transaminase levels were determined 8 and 24 hours after the Con-A injection. The ALT and AST levels are presented in Sigma-Frankel units. The differences between the two groups are statistically significant as determined by ANOVA (P < 0.001). (e–g) TRAIL–/– and TRAIL+/+ mice, three per group, were injected with a low dose of Con-A (8 mg/kg of body weight) in PBS once a week for 6 consecutive weeks (25). Control mice received only PBS injections. One week after the last injection, mice were sacrificed and serum transaminase activities determined (e and f). The degree of fibrosis was determined by measurement of the amount of collagen per milligram of total liver proteins as previously described (24). The differences between the two groups after Con-A injections are statistically significant (P < 0.05) for AST and ALT, but not for collagen.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts