Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Maladaptive trained immunity in viral infections
Dmitri Sviridov, Mihai G. Netea, Michael I. Bukrinsky
Dmitri Sviridov, Mihai G. Netea, Michael I. Bukrinsky
View: Text | PDF
Review

Maladaptive trained immunity in viral infections

  • Text
  • PDF
Abstract

Trained immunity (TRIM) is a form of long-lasting functional reprogramming of innate immune cells and their progenitors that enhances responsiveness to subsequent stimuli. Although first characterized in myeloid cells, TRIM was recently extended to nonmyeloid cell types, including endothelial and glial cells, which also exhibit stimulus-driven, memory-like behavior. While initially recognized as a protective mechanism, particularly in the context of vaccines and acute infections, TRIM can also become maladaptive, promoting chronic inflammation, immune dysfunction, and disease. This Review focuses on virus-induced TRIM while also addressing microbial, metabolic, and endogenous inducers. We examine key ligands and receptors that initiate TRIM and dissect the associated signaling and epigenetic pathways. Importantly, we argue that maladaptive TRIM arises not from a specific ligand, receptor, or molecular event, but from contextual factors such as stimulus persistence, dose, tissue microenvironment, and preexisting inflammation. The nature of the secondary challenge also shapes whether a trained response is adaptive or maladaptive. We further discuss TRIM induction in the bone marrow, involvement of both myeloid and nonmyeloid cells, and the role of lipid rafts in sustaining TRIM. We review maladaptive TRIM’s potential contribution to systemic diseases, such as atherosclerosis, diabetes, sepsis, cancer, and autoimmunity, along with its influence on viral vaccine responses. Finally, we outline potential strategies to redirect maladaptive TRIM and propose key outstanding questions for future research.

Authors

Dmitri Sviridov, Mihai G. Netea, Michael I. Bukrinsky

×

Figure 2

Balancing TRIM responses: context-dependent outcomes.

Options: View larger image (or click on image) Download as PowerPoint
Balancing TRIM responses: context-dependent outcomes.
TRIM can result in...
TRIM can result in either protective or maladaptive outcomes, depending on the context and duration of stimulation. Following exposure to infectious or endogenous stimuli, innate immune cells undergo epigenetic and metabolic reprogramming, leading to an initial inflammatory response. In the case of a single, transient exposure, such as vaccination or acute infection, this response typically resolves, resulting in protective TRIM. However, repeated or prolonged stimulation, as seen with chronic infections or frequent immunizations, may drive maladaptive TRIM characterized by sustained inflammation. The nature of the secondary stimulus also influences the outcome: successful resolution of infection supports adaptive responses, while persistent infection or excessive inflammatory signaling favors maladaptive TRIM. Understanding these dynamics is critical for optimizing vaccine strategies and managing chronic immune activation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts