Previously, we described an APC-adenovirus (APC-Ad) FasL cell gene therapy method which could be used to deplete autoreactive T cells in vivo. FasL was toxic, however, and controlled regulation of FasL was not achieved. Here we describe an improved approach to delivering TNF-related apoptosis-inducing ligand (TRAIL) in vivo in which collagen II–induced (CII-induced) arthritis–susceptible (CIA-susceptible) DBA/1j mice were treated with CII-pulsed DCs that had been transfected with a novel Ad system. The Ad was engineered to exhibit inducible TRAIL under the control of the doxycycline-inducible (DOX-inducible) tetracycline response element (TRE). Four groups of mice were treated with CII-DC-AdTRAIL+DOX, CII-DC-AdTRAIL (no DOX), CII-DC-AdGFP+DOX, or DC-AdTRAIL+DOX (no CII), beginning 2 weeks after priming with CII in CFA. The incidence of arthritis and infiltration of T cells in the joint was significantly decreased in CII-DC-AdTRAIL+DOX–treated mice. The in vitro splenic T cell proliferative response and induction of IFN-γ to bovine CII stimulation were also significantly reduced in mice treated with CII-DC-AdTRAIL+DOX. AdTRAIL+DOX was not toxic to DCs or mice but could induce activated T cells to undergo apoptosis in the spleen. Our results suggest that CII-DC-AdTRAIL+DOX cell gene therapy is a safe and effective method for inhibiting the development of CIA.
Zhongyu Liu, Xin Xu, Hui-Chen Hsu, Albert Tousson, Ping-Ar Yang, Qi Wu, Cunren Liu, Shaohua Yu, Huang-Ge Zhang, John D. Mountz
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 697 | 32 |
56 | 27 | |
Figure | 277 | 7 |
Citation downloads | 65 | 0 |
Totals | 1,095 | 66 |
Total Views | 1,161 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.