Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Myc confers androgen-independent prostate cancer cell growth
David Bernard, … , Jesús Gil, David H. Beach
David Bernard, … , Jesús Gil, David H. Beach
Published December 1, 2003
Citation Information: J Clin Invest. 2003;112(11):1724-1731. https://doi.org/10.1172/JCI19035.
View: Text | PDF
Article Oncology

Myc confers androgen-independent prostate cancer cell growth

  • Text
  • PDF
Abstract

Prostate cancer is one of the most diagnosed and mortal cancers in western countries. A major clinical problem is the development of androgen-independent prostate cancer (AIPC) during antihormonal treatment. The molecular mechanisms underlying the change from androgen dependence to independence of these tumors are poorly understood and represent a challenge to develop new therapies. Based on genetic data showing amplification of the c-myc gene in AIPC, we studied the ability of c-myc to confer AIPC cell growth. Human androgen-dependent prostate cancer cells overexpressing c-myc grew independently of androgens and presented tumorigenic properties in androgen-depleted conditions. Analysis of signalling pathways by pharmacological inhibitors of the androgen receptor (AR) or by RNA interference directed against AR or c-myc showed that c-myc acted downstream of AR through multiple growth effectors. Thus c-myc is required for androgen-dependent growth and following ectopic expression can induce androgen-independent growth. Moreover, RNA interference directed against c-myc showed that growth of human AIPC cells, AR-positive or -negative, required c-myc expression. Furthermore, we showed that c-myc–overexpressing cells retain a functional p53 pathway and thus respond to etoposide.

Authors

David Bernard, Albin Pourtier-Manzanedo, Jesús Gil, David H. Beach

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
c-myc is an essential downstream growth effector of AR. (a) c-myc expres...
c-myc is an essential downstream growth effector of AR. (a) c-myc expression during AR inhibition. Media containing bicalutamide was added to inhibit AR activity for the indicated times. RNA and protein extracts were prepared and analyzed by RT-PCR and Western blot, respectively. (b) c-myc expression during AR activation. Cells were maintained in media with CDS and bicalutamide for 2 days. Next, normal media was added to restimulate AR activity for the indicated times. Cellular extracts were prepared and analyzed. (c) Silencing of c-myc expression. Cells were infected and selected for 2 days, then cellular extracts were prepared and analyzed for c-myc and β-actin expression. (d) Colony-formation assays. Cells (400,000) were infected with pRS and pRS/myc retroviral vectors, and after 11 days the cells were stained with crystal violet. (e) Expression of growth regulators during AR inhibition. Cellular extracts were prepared before bicalutamide treatment or after 4 days and 12 days of treatment, resolved by SDS-PAGE, and analyzed by immunoblotting against c-myc, p16, RB, E2F1, cyclin A, Skp2, p27, CDK4, cyclin D1, hTERT, ornithine decarboxylase (ODC), and β-actin as a loading control. (f) Growth curve assays. Cells were infected successively with the different retroviruses and treated with polyamine. The growth curves were performed as described above. Shown is percentage of growth compared with 100% for c-myc–expressing cells treated with bicalutamide at day 12.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts