Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease
Kim Tieu, Celine Perier, Casper Caspersen, Peter Teismann, Du-Chu Wu, Shi-Du Yan, Ali Naini, Miquel Vila, Vernice Jackson-Lewis, Ravichandran Ramasamy, Serge Przedborski
Kim Tieu, Celine Perier, Casper Caspersen, Peter Teismann, Du-Chu Wu, Shi-Du Yan, Ali Naini, Miquel Vila, Vernice Jackson-Lewis, Ravichandran Ramasamy, Serge Przedborski
View: Text | PDF
Article Neuroscience

D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease

  • Text
  • PDF
Abstract

Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of the nigrostriatal dopaminergic neurons accompanied by a deficit in mitochondrial respiration. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that causes dopaminergic neurodegeneration and a mitochondrial deficit reminiscent of PD. Here we show that the infusion of the ketone body D-β-hydroxybutyrate (DβHB) in mice confers partial protection against dopaminergic neurodegeneration and motor deficits induced by MPTP. These effects appear to be mediated by a complex II–dependent mechanism that leads to improved mitochondrial respiration and ATP production. Because of the safety record of ketone bodies in the treatment of epilepsy and their ability to penetrate the blood-brain barrier, DβHB may be a novel neuroprotective therapy for PD.

Authors

Kim Tieu, Celine Perier, Casper Caspersen, Peter Teismann, Du-Chu Wu, Shi-Du Yan, Ali Naini, Miquel Vila, Vernice Jackson-Lewis, Ravichandran Ramasamy, Serge Przedborski

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
DβHB increases oxygen consumption in purified brain mitochondria. Mitoch...
DβHB increases oxygen consumption in purified brain mitochondria. Mitochondria (300 μg) were incubated in the absence or presence of MPP+ (5 minutes; a) or rotenone (2.5 minutes; b) at 30°C, and then 5 mM DβHB was added to induce oxygen consumption. DβHB attenuated inhibition of mitochondrial respiration induced by MPP+ (a) or rotenone (b) at indicated concentrations, which blocked about 25–90% of oxygen consumption when glutamate and malate were used as NADH-linked substrates (data not shown). (c) The improvement of oxygen consumption by DβHB is stereospecific and is blocked by 10 mM 3-NP, a complex II inhibitor. (d) DβHB increases oxygen consumption in a dose-dependent and saturable fashion as seen with succinate, a complex II substrate, although not as efficiently as succinate does on an equimolar basis. n = 3–4.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts