Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease
Kim Tieu, Celine Perier, Casper Caspersen, Peter Teismann, Du-Chu Wu, Shi-Du Yan, Ali Naini, Miquel Vila, Vernice Jackson-Lewis, Ravichandran Ramasamy, Serge Przedborski
Kim Tieu, Celine Perier, Casper Caspersen, Peter Teismann, Du-Chu Wu, Shi-Du Yan, Ali Naini, Miquel Vila, Vernice Jackson-Lewis, Ravichandran Ramasamy, Serge Przedborski
View: Text | PDF
Article Neuroscience

D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease

  • Text
  • PDF
Abstract

Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of the nigrostriatal dopaminergic neurons accompanied by a deficit in mitochondrial respiration. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that causes dopaminergic neurodegeneration and a mitochondrial deficit reminiscent of PD. Here we show that the infusion of the ketone body D-β-hydroxybutyrate (DβHB) in mice confers partial protection against dopaminergic neurodegeneration and motor deficits induced by MPTP. These effects appear to be mediated by a complex II–dependent mechanism that leads to improved mitochondrial respiration and ATP production. Because of the safety record of ketone bodies in the treatment of epilepsy and their ability to penetrate the blood-brain barrier, DβHB may be a novel neuroprotective therapy for PD.

Authors

Kim Tieu, Celine Perier, Casper Caspersen, Peter Teismann, Du-Chu Wu, Shi-Du Yan, Ali Naini, Miquel Vila, Vernice Jackson-Lewis, Ravichandran Ramasamy, Serge Przedborski

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Protective effect of DβHB against motor deficit in MPTP-treated mice. An...
Protective effect of DβHB against motor deficit in MPTP-treated mice. Animals were infused subcutaneously with either vehicle (saline) or DβHB (1.6 mmol/kg/d) 1 day before receiving intraperitoneal injections of either saline or MPTP (18 mg/kg). Pumps were removed at day 7, and animals were allowed to recover from surgery and dehydration for an additional 7 days before their Rotarod performance was assessed. Motor deficit is observed in the MPTP-treated animals, but DβHB significantly improves this impairment. DβHB does not affect base-line motor function in saline-injected mice. n = 4–13; *P < 0.05 compared with the saline-vehicle group; #P < 0.05 compared with the MPTP-vehicle group.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts