Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hemodynamic forces prevent myxomatous valve disease in mice through KLF2/4 signaling
Jesse A. Pace, … , Giovanni Ferrari, Mark L. Kahn
Jesse A. Pace, … , Giovanni Ferrari, Mark L. Kahn
Published June 16, 2025
Citation Information: J Clin Invest. 2025;135(12):e186593. https://doi.org/10.1172/JCI186593.
View: Text | PDF
Research Article Cardiology Vascular biology

Hemodynamic forces prevent myxomatous valve disease in mice through KLF2/4 signaling

  • Text
  • PDF
Abstract

Myxomatous valve disease (MVD) is the most common form of cardiac valve disease in the developed world. A small fraction of MVD is syndromic and arises in association with matrix protein defects such as those in Marfan syndrome, but most MVD is acquired later in life through an undefined pathogenesis. The KLF2/4 transcription factors mediate endothelial fluid shear responses, including those required to create cardiac valves during embryonic development. Here we test the role of hemodynamic shear forces and downstream endothelial KLF2/4 in mature cardiac valves. We find that loss of hemodynamic forces in heterotopically transplanted hearts or genetic deletion of KLF2/4 in cardiac valve endothelium confers valve cell proliferation and matrix deposition associated with valve thickening, findings also observed in mice expressing the mutant fibrillin-1 protein known to cause human MVD. Transcriptomic and histologic analysis reveals increased monocyte recruitment and TGF-β signaling in both fibrillin-1–mutant valves and valves lacking hemodynamic forces or endothelial KLF2/4 function, but only loss of TGF-β/SMAD signaling rescued myxomatous changes. We observed reduced KLF2/4 expression and augmented SMAD signaling in human MVD. These studies identify hemodynamic activation of endothelial KLF2/4 as an environmental homeostatic regulator of cardiac valves and suggest that non-syndromic MVD may arise in association with disturbed blood flow across the aging valve.

Authors

Jesse A. Pace, Lauren M. Goddard, Courtney C. Hong, Liqing Wang, Jisheng Yang, Mei Chen, Yitian Xu, Martin H. Dominguez, Siqi Gao, Xiaowen Chen, Patricia Mericko-Ishizuka, Can Tan, Tsutomu Kume, Wenbao Yu, Kai Tan, Wayne W. Hancock, Giovanni Ferrari, Mark L. Kahn

×

Figure 4

Loss of endothelial KLF2/4 in the mature heart valve leads to proliferation and endothelial-mesenchymal transition.

Options: View larger image (or click on image) Download as PowerPoint
Loss of endothelial KLF2/4 in the mature heart valve leads to proliferat...
(A) Immunostaining for PECAM-1, Ki67, and DAPI in tricuspid valve at days 4, 7, and 14 after tamoxifen treatment. (B) Quantification of Ki67+ cells in PECAM-1+ and PECAM-1– cells. N = 5 mice per group. **P < 0.01, ****P < 0.0001, by unpaired t tests. (C) Immunostaining for RFP, PECAM-1, and DAPI 14 days after tamoxifen treatment. Scale bars: 50 μm (A and C). (D) Quantification of percentage endothelial-mesenchymal transition (EndMT) cells from C. **P < 0.01, by unpaired t tests. (E) Immunostaining for FSP1 (S100A4) and DAPI 14 days after tamoxifen treatment. Scale bars: 100 μm. Arrows indicate flow side of the valve. (F) Quantification of FSP1 staining in E. *P < 0.05, **P < 0.01, by unpaired t tests.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts