Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Upregulation of insulin receptor substrate-2 in pancreatic β cells prevents diabetes
Anita M. Hennige, … , Mahmud Mossa-Basha, Morris F. White
Anita M. Hennige, … , Mahmud Mossa-Basha, Morris F. White
Published November 15, 2003
Citation Information: J Clin Invest. 2003;112(10):1521-1532. https://doi.org/10.1172/JCI18581.
View: Text | PDF
Article Metabolism

Upregulation of insulin receptor substrate-2 in pancreatic β cells prevents diabetes

  • Text
  • PDF
Abstract

The insulin receptor substrate-2 (Irs2) branch of the insulin/IGF signaling system coordinates peripheral insulin action and pancreatic β cell function, so mice lacking Irs2 display similarities to humans with type 2 diabetes. Here we show that β cell–specific expression of Irs2 at a low or a high level delivered a graded physiologic response that promoted β cell growth, survival, and insulin secretion that prevented diabetes in Irs2–/– mice, obese mice, and streptozotocin-treated mice; and that upon transplantation, the transgenic islets cured diabetes more effectively than WT islets. Thus, pharmacological approaches that promote Irs2 expression in β cells, especially specific cAMP agonists, could be rational treatments for β cell failure and diabetes.

Authors

Anita M. Hennige, Deborah J. Burks, Umut Ozcan, Rohit N. Kulkarni, Jing Ye, Sunmin Park, Markus Schubert, Tracey L. Fisher, Matt A. Dow, Rebecca Leshan, Mark Zakaria, Mahmud Mossa-Basha, Morris F. White

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
IGF1 and insulin signaling in isolated islets. (a) Islets were isolated ...
IGF1 and insulin signaling in isolated islets. (a) Islets were isolated from WT or Irs2–/– C57BL/6 mice and incubated overnight before stimulation with insulin or IGF1 for 20 minutes as described in Methods. Each lane was loaded with 100 μg of total islet protein. The results are representative of at least three independent experiments. (b) Islets were isolated from WT, Irs2–/–:rip13→Irs2, and rip13→Irs2 mice and incubated overnight before stimulation with IGF1 for 20 minutes as described in Methods. The same amount of total protein (300 μg) was loaded onto the gel and transferred to a nitrocellulose membrane. Membranes were analyzed for the presence of Erk1/2 and phosphorylated Erk (pErk1/2); Akt1/2 and phosphorylated Akt (pAkt1/2); Foxo1 and phosphorylated Foxo1 (pFoxo1); and cleaved caspase-3 (Casp3).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts