Posttranslational modification (PTM) of the amyloid precursor protein (APP) plays a critical role in Alzheimer’s disease (AD). Recent evidence reveals that lactylation modification, as a novel PTM, is implicated in the occurrence and development of AD. However, whether and how APP lactylation contributes to both the pathogenesis and cognitive function in AD remains unknown. Here, we observed a reduction in APP lactylation in AD patients and AD model mice and cells. Proteomic mass spectrometry analysis further identified lysine 612 (APP-K612la) as a crucial site for APP lactylation, influencing APP amyloidogenic processing. A lactyl-mimicking mutant (APPK612T) reduced amyloid-β peptide (Aβ) generation and slowed down cognitive deficits in vivo. Mechanistically, APPK612T appeared to facilitate APP trafficking and metabolism. However, lactylated APP entering the endosome inhibited its binding to BACE1, suppressing subsequent cleavage. Instead, it promoted protein interaction between APP and CD2-associated protein (CD2AP), thereby accelerating the endosomal-lysosomal degradation pathway of APP. In the APP23/PS45 double-transgenic mouse model of AD, APP-Kla was susceptible to L-lactate regulation, which reduced Aβ pathology and repaired spatial learning and memory deficits. Thus, these findings suggest that targeting APP lactylation may be a promising therapeutic strategy for AD in humans.
Qiuyun Tian, Junjie Li, Bin Wu, Yayan Pang, Wenting He, Qian Xiao, Jiaojiao Wang, Lilin Yi, Na Tian, Xiuyu Shi, Lei Xia, Xin Tian, Mulan Chen, Yepeng Fan, Boqing Xu, Yuhan Tao, Weihong Song, Yehong Du, Zhifang Dong
Usage data is cumulative from January 2025 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 6,358 | 2,299 |
| 1,218 | 579 | |
| Figure | 1,813 | 0 |
| Supplemental data | 748 | 262 |
| Citation downloads | 136 | 0 |
| Totals | 10,273 | 3,140 |
| Total Views | 13,413 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.