Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pharmacologic inhibition of IRE1α-dependent decay protects alveolar epithelial identity and prevents pulmonary fibrosis in mice
Vincent C. Auyeung, … , Dean Sheppard, Feroz R. Papa
Vincent C. Auyeung, … , Dean Sheppard, Feroz R. Papa
Published October 15, 2025
Citation Information: J Clin Invest. 2025;135(20):e184522. https://doi.org/10.1172/JCI184522.
View: Text | PDF
Research Article Pulmonology

Pharmacologic inhibition of IRE1α-dependent decay protects alveolar epithelial identity and prevents pulmonary fibrosis in mice

  • Text
  • PDF
Abstract

Stress-induced epithelial plasticity is central to lung regeneration, fibrosis, and malignancy, but how cellular stress leads to differentiation is incompletely understood. Here, we found a central role for IRE1α, a conserved mediator of the unfolded protein response (UPR), in stimulating the plasticity of alveolar type 2 (AT2) cells. In single-cell RNA-seq, IRE1α activity was associated with loss of AT2 identity and progression toward a damage-associated transitional state unique to fibrosis. AT2 plasticity required destructive regulated IRE1α-dependent decay (RIDD), which we demonstrated by deploying PAIR2, a kinase modulator that inhibits RIDD while preserving IRE1α’s adaptive XBP1 mRNA splicing activity. In vivo, selective inhibition of RIDD with PAIR2 reduced AT2 differentiation into profibrotic transitional cells and protected mice from bleomycin-induced pulmonary fibrosis. Mechanistically, we identified the Fgfr2 mRNA as a direct and regulated substrate for IRE1α’s RNase in primary AT2 cells and in a biochemically reconstituted cell-free system. Loss of Fgf signaling caused AT2 differentiation, while gain of signaling protected cells from IRE1α-induced differentiation. We propose that IRE1α downregulates Fgf signaling through RIDD, provoking loss of AT2 identity and differentiation towards a profibrotic phenotype. Thus, IRE1α’s RIDD activity emerges as a novel target for treatment of pulmonary fibrosis and potentially other diseases driven by aberrant epithelial cell plasticity.

Authors

Vincent C. Auyeung, Tavienne L. Steinberg, Alina Olivier, Luka Suzuki, Mary E. Moreno, Imran S. Khan, Michael S. Downey, Maike Thamsen, Lu Guo, Dustin J. Maly, Bradley J. Backes, Dean Sheppard, Feroz R. Papa

×

Figure 1

An IRE1α-active subpopulation of fibrotic DATPs emerges after bleomycin injury but not in normal development.

Options: View larger image (or click on image) Download as PowerPoint
An IRE1α-active subpopulation of fibrotic DATPs emerges after bleomycin ...
(A) Single-cell sequencing and uniform manifold approximation and projection (UMAP) of epithelial cells from adult mice exposed to saline (n = 2 mice) or bleomycin (n = 3 mice). (B) Expression of AT2, transitional state, and early AT1 markers. (C) Integration of cells from postnatal alveolar growth at postnatal day 7 (n = 2 mice) and day 14 (n = 2 mice) with adult cells in A. (D) UMAP detail of cells with high Krt8 expression with overlay of an AT1 marker (Pdpn) and markers of DATPs that emerge after bleomycin injury. (E) UMAP of cells as in D with overlay of expression of genes associated with the IRE1α and PERK arms of the unfolded protein and integrated stress responses (ISR). (F) Inference of IRE1α activity based on area-under-curve (AUC) analysis of genes upregulated by IRE1α, overlaid on a UMAP of saline or bleomycin-exposed cells. Based on the distribution of scores (left), IRE1α is considered inactive in cells with AUC < 0.28. (G) IRE1α activity scores in cells from bleomycin exposed mice with IRE1α EpiKO, or treated with an IRE1α kinase inhibitor (KIRA8).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts