Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis
Clare R. Ozawa, … , Donald M. McDonald, Helen M. Blau
Clare R. Ozawa, … , Donald M. McDonald, Helen M. Blau
Published February 15, 2004
Citation Information: J Clin Invest. 2004;113(4):516-527. https://doi.org/10.1172/JCI18420.
View: Text | PDF
Article Cardiology

Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis

  • Text
  • PDF
Abstract

Use of long-term constitutive expression of VEGF for therapeutic angiogenesis may be limited by the growth of abnormal blood vessels and hemangiomas. We investigated the relationship between VEGF dosage and the morphology and function of newly formed blood vessels by implanting retrovirally transduced myoblasts that constitutively express VEGF164 into muscles of adult mice. Reducing VEGF dosage by decreasing the total number of VEGF myoblasts implanted did not prevent vascular abnormalities. However, when clonal populations of myoblasts homogeneously expressing different levels of VEGF were implanted, a threshold between normal and aberrant angiogenesis was found. Clonal myoblasts that expressed low to medium levels of VEGF induced growth of stable, pericyte-coated capillaries of uniform size that were not leaky and became VEGF independent, as shown by treatment with the potent VEGF blocker VEGF-TrapR1R2. In contrast, clones that expressed high levels of VEGF induced hemangiomas. Remarkably, when different clonal populations were mixed, even a small proportion of cells with high production of VEGF was sufficient to cause hemangioma growth. These results show for the first time to our knowledge that the key determinant of whether VEGF-induced angiogenesis is normal or aberrant is the microenvironmental amount of growth factor secreted, rather than the overall dose. Long-term continuous delivery of VEGF, when maintained below a threshold microenvironmental level, can lead to normal angiogenesis without other exogenous growth factors.

Authors

Clare R. Ozawa, Andrea Banfi, Nicole L. Glazer, Gavin Thurston, Matthew L. Springer, Peggy E. Kraft, Donald M. McDonald, Helen M. Blau

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Uniform VEGF production across a broad range of levels by myoblast clone...
Uniform VEGF production across a broad range of levels by myoblast clones. Clones were selected that ranged in VEGF protein secretion levels from 10% to 325% of the average of the parent VEGF myoblast population; these are designated “10% clone” and “325% clone,” for example. Actual VEGF production is indicated above the bar for each population (as ng/106 cells/day). Error bars indicate the SEM of three replicate measurements per clone or population. Ctrl, LacZ-expressing control myoblasts; Poly. VEGF, original polyclonal VEGF myoblast population from which the clones were derived; ND, not detectable.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts