Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo
Jason L. Eriksen, … , Edward H. Koo, Todd E. Golde
Jason L. Eriksen, … , Edward H. Koo, Todd E. Golde
Published August 1, 2003
Citation Information: J Clin Invest. 2003;112(3):440-449. https://doi.org/10.1172/JCI18162.
View: Text | PDF
Article Neuroscience

NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo

  • Text
  • PDF
Abstract

Epidemiologic studies demonstrate that long-term use of NSAIDs is associated with a reduced risk for the development of Alzheimer disease (AD). In this study, 20 commonly used NSAIDs, dapsone, and enantiomers of flurbiprofen were analyzed for their ability to lower the level of the 42-amino-acid form of amyloid β protein (Aβ42) in a human H4 cell line. Thirteen of the NSAIDs and the enantiomers of flurbiprofen were then tested in acute dosing studies in amyloid β protein precursor (APP) transgenic mice, and plasma and brain levels of Aβ and the drug were evaluated. These studies show that (a) eight FDA-approved NSAIDs lower Aβ42 in vivo, (b) the ability of an NSAID to lower Aβ42 levels in cell culture is highly predicative of its in vivo activity, (c) in vivo Aβ42 lowering in mice occurs at drug levels achievable in humans, and (d) there is a significant correlation between Aβ42 lowering and levels of ibuprofen. Importantly, flurbiprofen and its enantiomers selectively lower Aβ42 levels in broken cell γ-secretase assays, indicating that these compounds directly target the γ-secretase complex that generates Aβ from APP. Of the compounds tested, meclofenamic acid, racemic flurbiprofen, and the purified R and S enantiomers of flurbiprofen lowered Aβ42 levels to the greatest extent. Because R-flurbiprofen reduces Aβ42 levels by targeting γ-secretase and has reduced side effects related to inhibition of cyclooxygenase (COX), it is an excellent candidate for clinical testing as an Aβ42 lowering agent.

Authors

Jason L. Eriksen, Sarah A. Sagi, Tawnya E. Smith, Sascha Weggen, Pritam Das, D.C. McLendon, Victor V. Ozols, Kevin W. Jessing, Kenton H. Zavitz, Edward H. Koo, Todd E. Golde

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Flurbiprofen and R-flurbiprofen selectively lower Aβ42 in broken cell γ-...
Flurbiprofen and R-flurbiprofen selectively lower Aβ42 in broken cell γ-secretase assays. Dose-response studies of Aβ40 and Aβ42 production in a broken cell assay shows that Aβ42 production is selectively inhibited by flurbiprofen and its enantiomers in vitro. Error bars indicate the SEM. Similar results are seen with purified S-flurbiprofen (data not shown). Data are averaged from two independent experiments with duplicate samples at each dose. Absolute control values are 1143 ± 51 pM for Aβ40 production and 91 ± 9 pM for Aβ42 production.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts