Despite the clinical success of targeted inhibitors in cutaneous melanoma, therapeutic responses are transient and influenced by the aged tumor microenvironment, and drug-tolerant residual cells seed resistance. Given the similarities between drug tolerance and cellular dormancy, we studied the dormancy marker, nuclear receptor subfamily 2 group F member 1 (NR2F1), in response to targeted therapy. We utilized BRAF-V600E inhibitors (BRAFi) plus MEK inhibitors (MEKi) in BRAF-mutant melanoma models since melanoma patients treated with this combination display minimal residual disease, but ultimately tumors relapse. Transcriptomic analysis of melanoma samples from patients treated up to 20 days with BRAFi + MEKi showed increased expression of NR2F1. Similarly, NR2F1 was highly expressed in the drug-tolerant invasive cell state of minimal residual disease in patient-derived and mouse-derived xenograft tumors on BRAFi + MEKi treatment. Overexpression of NR2F1 alone was sufficient to reduce BRAFi + MEKi effects on tumor growth in vivo as well as on cell proliferation, death, and invasion in vitro. NR2F1-overexpressing cells were enriched for hallmarks gene sets for mTORC1 signaling, and NR2F1 bound to the promoter regions of genes involved in mTORC1 signaling. These cells were sensitive to the combination of BRAFi, MEKi plus rapamycin in vitro and in vivo. Melanomas from aged mice, which are known to exhibit a decreased response to BRAFi + MEKi, displayed higher levels of NR2F1 compared to tumors from young mice. Depleting NR2F1 levels in an aged mouse melanoma model improved the response to targeted therapy. These findings show high NR2F1 expression in ‘invasive-state’ residual cells and that targeting NR2F1-high cells with mTORC1 inhibitors could improve outcomes in melanoma patients.
Manoela Tiago, Timothy J. Purwin, Casey D. Stefanski, Renaira Silva, Mitchell E. Fane, Yash Chhabra, Jelan I. Haj, Jessica L.F. Teh, Rama Kadamb, Weijia Cai, Sheera R. Rosenbaum, Vivian Chua, Nir Hacohen, Michael A. Davies, Jessie Villanueva, Inna Chervoneva, Ashani T. Weeraratna, Dan A. Erkes, Claudia Capparelli, Julio A. Aguirre-Ghiso, Andrew E. Aplin
Usage data is cumulative from July 2025 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 500 | 0 |
127 | 0 | |
Supplemental data | 33 | 0 |
Citation downloads | 19 | 0 |
Totals | 679 | 0 |
Total Views | 679 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.